Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Jenniffer Carolina Triana-Martinez"'
Autor:
Jenniffer Carolina Triana-Martinez, Andrés Marino Álvarez-Meza, Julian Gil-González, Tom De Swaef, Jose A. Fernandez-Gallego
Publikováno v:
Remote Sensing, Vol 16, Iss 15, p 2854 (2024)
To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal
Externí odkaz:
https://doaj.org/article/25861f817eea496e9edb90d82ecf6e32
Autor:
Jenniffer Carolina Triana-Martinez, Julian Gil-González, Jose A. Fernandez-Gallego, Andrés Marino Álvarez-Meza, Cesar German Castellanos-Dominguez
Publikováno v:
Sensors, Vol 23, Iss 7, p 3518 (2023)
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these
Externí odkaz:
https://doaj.org/article/f2af93c79b4948c9ba5a4126634a127a
Autor:
Jenniffer Carolina Triana-Martinez, Jose A. Fernandez-Gallego, Oscar Barrero, Irene Borra-Serrano, Tom De Swaef, Peter Lootens, Isabel Roldan-ruiz
For precision agriculture (PA) applications that use aerial platforms, researchers are likely to be interested in extracting, study and understanding biophysical and structural properties in a spatio-temporal manner by using remotely sensed imagery t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::68784911ad89a55e369335703dbc8e99
https://doi.org/10.5194/egusphere-egu22-8914
https://doi.org/10.5194/egusphere-egu22-8914