Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Jennifer Pestana"'
Autor:
Mariarosa Mazza, Jennifer Pestana
In this work, we perform a spectral analysis of flipped multilevel Toeplitz sequences, i.e., we study the asymptotic spectral behaviour of $\{Y_{\boldsymbol{n}}T_{\boldsymbol{n}}(f)\}_{\boldsymbol{n}}$, where $T_{\boldsymbol{n}}(f)$ is a real, square
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3c8816850f36e0f4a9c4d518666d72a
http://arxiv.org/abs/2011.08372
http://arxiv.org/abs/2011.08372
Autor:
Jennifer Pestana, John W. Pearson
Publikováno v:
Pearson, J W & Pestana, J 2020, ' Preconditioners for Krylov subspace methods: An overview ', GAMM-Reports, vol. 43, no. 4 . https://doi.org/10.1002/gamm.202000015
When simulating a mechanism from science or engineering, or an industrial process, one is frequently required to construct a mathematical model, and then resolve this model numerically. If accurate numerical solutions are necessary or desirable, this
Publikováno v:
International Conference on Sensor Signal Processing for Defence
This paper explores how angle of arrival (AoA) estimation using the multiple signal classification (MUSIC) algorithm is affected by estimation errors in the space-time covariance matrix. In particular, we explore how this estimation error perturbs th
In this work we study the convergence properties of the one-level parallel Schwarz method with Robin transmission conditions applied to the one-dimensional and two-dimensional Helmholtz and Maxwell's equations. One-level methods are not scalable in g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b8f6f0e2221b110fbfe4e03ae8154b1
http://arxiv.org/abs/2006.08801
http://arxiv.org/abs/2006.08801
Autor:
Andrew J. Wathen, Jennifer Pestana
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173--196] recently introduced the block antitriangular (``Batman'') decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for sadd
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f76b32298de0dd05dab662f495ffdffb
https://doi.org/10.1137/130934933
https://doi.org/10.1137/130934933
Publikováno v:
2019 International Conference on Acoustics, Speech, and Signal Processing
University of Strathclyde
ICASSP
University of Strathclyde
ICASSP
Estimation errors are incurred when calculating the sample space-time covariance matrix. We formulate the variance of this estimator when operating on a finite sample set, compare it to known results, and demonstrate its precision in simulations. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0adcbd53efb58b4c39ab6d9e07e3df0
https://strathprints.strath.ac.uk/66827/14/Delaosa_etal_ICASSP_2019_Sample_space_time_covariance_matrix_estimation.pdf
https://strathprints.strath.ac.uk/66827/14/Delaosa_etal_ICASSP_2019_Sample_space_time_covariance_matrix_estimation.pdf
Publikováno v:
2019 International Conference on Acoustics, Speech, and Signal Processing
ICASSP
ICASSP
We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix. Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost association between bins via a maximum likelihood sequence detectio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37d7c50f4d3c73aaf3be9a1972b68fe3
https://strathprints.strath.ac.uk/66825/14/Weiss_etal_ICASSP_2019_Iterative_approximation_of_analytic_eigenvalues_of_a_parahermitian_matrix_EVD.pdf
https://strathprints.strath.ac.uk/66825/14/Weiss_etal_ICASSP_2019_Iterative_approximation_of_analytic_eigenvalues_of_a_parahermitian_matrix_EVD.pdf
Publikováno v:
Sensor Signal Processing for Defence 2019
The ensemble-optimum support for a sample space-time covariance matrix can be determined from the ground truth space-time covariance, and the variance of the estimator. In this paper we provide approximations that permit the estimation of the sample-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e7f5b8f631ca9f09ee632a7191af89f
https://strathprints.strath.ac.uk/67267/1/Delaosa_etal_SSPC2019_Support_estimation_of_a_sample_space_time_covariance_matrix.pdf
https://strathprints.strath.ac.uk/67267/1/Delaosa_etal_SSPC2019_Support_estimation_of_a_sample_space_time_covariance_matrix.pdf
Autor:
Jennifer Pestana, Mariarosa Mazza
Publikováno v:
BIT Numerical Mathematics
In this work, we investigate the spectra of “flipped” Toeplitz sequences, i.e., the asymptotic spectral behaviour of $$\{Y_nT_n(f)\}_n$$ , where $$T_n(f)\in \mathbb {R}^{n\times n}$$ is a real Toeplitz matrix generated by a function $$f\in L^1([-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aafe283ea661dc7e99f35a99ef12f8b8
https://hdl.handle.net/21.11116/0000-0004-453A-E21.11116/0000-0004-453C-C
https://hdl.handle.net/21.11116/0000-0004-453A-E21.11116/0000-0004-453C-C
Publikováno v:
SAM
University of Strathclyde
University of Strathclyde
A variety of algorithms have been developed to compute an approximate polynomial matrix eigenvalue decomposition (PEVD). As an extension of the ordinary EVD to polynomial matrices, the PEVD will generate paraunitary matrices that diagonalise a parahe