Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Jennifer J, Hadlock"'
Autor:
Yeon Mi Hwang, Samantha N. Piekos, Alison G. Paquette, Qi Wei, Nathan D. Price, Leroy Hood, Jennifer J. Hadlock
Publikováno v:
BMC Medicine, Vol 22, Iss 1, Pp 1-13 (2024)
Abstract Background Pregnant women are significantly underrepresented in clinical trials, yet most of them take medication during pregnancy despite the limited safety data. The objective of this study was to characterize medication use during pregnan
Externí odkaz:
https://doaj.org/article/aa3a66d1d5b84494bce444b445e2ec6a
Autor:
Samantha N Piekos, PhD, Yeon Mi Hwang, BS, Ryan T Roper, MS, Tanya Sorensen, MD, Nathan D Price, ProfPhD, Leroy Hood, ProfPhD, Jennifer J Hadlock, MD
Publikováno v:
The Lancet: Digital Health, Vol 5, Iss 9, Pp e594-e606 (2023)
Summary: Background: COVID-19 in pregnant people increases the risk for poor maternal–fetal outcomes. However, COVID-19 vaccination hesitancy remains due to concerns over the vaccine's potential effects on maternal–fetal outcomes. Here we examine
Externí odkaz:
https://doaj.org/article/16b33d66b2434ee286b21538d8bcee3a
Autor:
Deepak R. Unni, Sierra A. T. Moxon, Michael Bada, Matthew Brush, Richard Bruskiewich, J. Harry Caufield, Paul A. Clemons, Vlado Dancik, Michel Dumontier, Karamarie Fecho, Gustavo Glusman, Jennifer J. Hadlock, Nomi L. Harris, Arpita Joshi, Tim Putman, Guangrong Qin, Stephen A. Ramsey, Kent A. Shefchek, Harold Solbrig, Karthik Soman, Anne E. Thessen, Melissa A. Haendel, Chris Bizon, Christopher J. Mungall, The Biomedical Data Translator Consortium
Publikováno v:
Clinical and Translational Science, Vol 15, Iss 8, Pp 1848-1855 (2022)
Abstract Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph‐based data models elucidate the interconnectedness among core biomedical concepts, enable data
Externí odkaz:
https://doaj.org/article/51789557b3144741819afc43c3755e97
Autor:
Karamarie Fecho, Anne E. Thessen, Sergio E. Baranzini, Chris Bizon, Jennifer J. Hadlock, Sui Huang, Ryan T. Roper, Noel Southall, Casey Ta, Paul B. Watkins, Mark D. Williams, Hao Xu, William Byrd, Vlado Dančík, Marc P. Duby, Michel Dumontier, Gustavo Glusman, Nomi L. Harris, Eugene W. Hinderer, Greg Hyde, Adam Johs, Andrew I. Su, Guangrong Qin, Qian Zhu, The Biomedical Data Translator Consortium
Publikováno v:
Clinical and Translational Science, Vol 15, Iss 8, Pp 1838-1847 (2022)
Abstract Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well‐being. However, the data are often siloed
Externí odkaz:
https://doaj.org/article/e60f6adb4b8840dba0f6a5708823c0c0
Autor:
Sevda Molani, Patricia V. Hernandez, Ryan T. Roper, Venkata R. Duvvuri, Andrew M. Baumgartner, Jason D. Goldman, Nilüfer Ertekin-Taner, Cory C. Funk, Nathan D. Price, Noa Rappaport, Jennifer J. Hadlock
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022)
Abstract Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions about individual patients and allocation of resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to
Externí odkaz:
https://doaj.org/article/c9e60f7b6eb94c9480017a497920d691
Autor:
Samantha N Piekos, PhD, Ryan T Roper, MS, Yeon Mi Hwang, BS, Tanya Sorensen, MD, Nathan D Price, ProfPhD, Leroy Hood, ProfPhD, Jennifer J Hadlock, MD
Publikováno v:
The Lancet: Digital Health, Vol 4, Iss 2, Pp e95-e104 (2022)
Summary: Background: The impact of maternal SARS-CoV-2 infection remains unclear. In this study, we evaluated the risk of maternal SARS-CoV-2 infection on birth outcomes and how this is modulated by the pregnancy trimester in which the infection occu
Externí odkaz:
https://doaj.org/article/4d9ef750d5b548068fec875f73d2e68b
Autor:
Venkata R. Duvvuri, Andrew Baumgartner, Sevda Molani, Patricia V. Hernandez, Dan Yuan, Ryan T. Roper, Wanessa F. Matos, Max Robinson, Yapeng Su, Naeha Subramanian, Jason D. Goldman, James R. Heath, Jennifer J. Hadlock
Publikováno v:
Health Data Science, Vol 2022 (2022)
Background: Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-II receptor blockers (ARB), the most commonly prescribed antihypertensive medications, counter renin-angiotensin-aldosterone system (RAAS) activation via induction of angiote
Externí odkaz:
https://doaj.org/article/9b195ac0fd924b1eb9f4f49f4908e4b8
Autor:
Jewel Y Lee, Sevda Molani, Chen Fang, Kathleen Jade, D Shane O'Mahony, Sergey A Kornilov, Lindsay T Mico, Jennifer J Hadlock
Publikováno v:
JMIR Medical Informatics, Vol 9, Iss 7, p e29986 (2021)
BackgroundSepsis is a life-threatening condition that can rapidly lead to organ damage and death. Existing risk scores predict outcomes for patients who have already become acutely ill. ObjectiveWe aimed to develop a model for identifying patients a
Externí odkaz:
https://doaj.org/article/957f33fca71342c8abe53376a45f04f7
Autor:
Kengo Watanabe, Tomasz Wilmanski, Christian Diener, John C. Earls, Anat Zimmer, Briana Lincoln, Jennifer J. Hadlock, Jennifer C. Lovejoy, Sean M. Gibbons, Andrew T. Magis, Leroy Hood, Nathan D. Price, Noa Rappaport
Publikováno v:
Nature Medicine. 29:996-1008
Multiomic profiling can reveal population heterogeneity for both health and disease states. Obesity drives a myriad of metabolic perturbations and is a risk factor for multiple chronic diseases. Here we report an atlas of cross-sectional and longitud
Autor:
Yeon Mi Hwang, Ryan T. Roper, Samantha N. Piekos, Daniel A. Enquobahrie, Mary F. Hebert, Alison G. Paquette, Priyanka Baloni, Nathan D. Price, Leroy Hood, Jennifer J. Hadlock
PurposeThere is uncertainty around the safety of SSRIs for treating depression during pregnancy. We aimed 1) to address confounding by indication, as well as socioeconomic and environmental factors associated with depression and 2) evaluate associati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8c4dad01a65e4643eb9626b769278dd4
https://doi.org/10.1101/2023.03.03.23286717
https://doi.org/10.1101/2023.03.03.23286717