Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Jenia Jitsev"'
Autor:
André Colliard-Granero, Jenia Jitsev, Michael H. Eikerling, Kourosh Malek, Mohammad J. Eslamibidgoli
Publikováno v:
ACS Nanoscience Au, Vol 3, Iss 5, Pp 398-407 (2023)
Externí odkaz:
https://doaj.org/article/69d14e66e70b4af2b6c18dd6f3ff108b
Publikováno v:
Frontiers in Computational Neuroscience, Vol 3 (2009)
Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed lo
Externí odkaz:
https://doaj.org/article/9f80563430114bea97805618af22e703
Autor:
Mohammad Javad Eslamibidgoli, Kourosh Malek, Mariah Batool, Jasna Jankovic, André Colliard-Granero, Jenia Jitsev, Michael Eikerling
The rapidly growing use of imaging infrastructure in the energy materials domain drives significant data accumulation in terms of their amount and complexity. The applications of routine techniques for image processing in materials research are often
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0c839bced037c72f8f83c31d97b46944
https://doi.org/10.33774/chemrxiv-2021-hr5zb
https://doi.org/10.33774/chemrxiv-2021-hr5zb
Autor:
Mohammad J, Eslamibidgoli, Fabian P, Tipp, Jenia, Jitsev, Jasna, Jankovic, Michael H, Eikerling, Kourosh, Malek
Publikováno v:
RSC advances. 11(51)
The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed
Autor:
Zeyu Lian, Mathis Bode, Michael Gauding, Dominik Denker, Marco Davidovic, Jenia Jitsev, Konstantin Kleinheinz, Heinz Pitsch
Publikováno v:
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 38(2), 2617-2625 (2021). doi:10.1016/j.proci.2020.06.022
Proceedings of the Combustion Institute 38(2), 2617-2625 (2021). doi:10.1016/j.proci.2020.06.022
Proceedings of the Combustion Institute 38(2), 2617-2625 (2021). doi:10.1016/j.proci.2020.06.022
Published by Elsevier, Amsterdam [u.a.]
Published by Elsevier, Amsterdam [u.a.]
Publikováno v:
IGARSS
617-620 (2020). doi:10.1109/IGARSS39084.2020.9323734
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Online event, Online event, 2020-09-26-2020-10-02
617-620 (2020). doi:10.1109/IGARSS39084.2020.9323734
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Online event, Online event, 2020-09-26-2020-10-02
This work proposes a novel distributed deep learning model for Remote Sensing (RS) images super-resolution. High Performance Computing (HPC) systems with GPUs are used to accelerate the learning of the unknown low to high resolution mapping from larg
Autor:
Alexandre Strube, Morris Riedel, Gabriele Cavallaro, Jenia Jitsev, Matthias Book, Rocco Sedona
Publikováno v:
IGARSS
IEEE 1058-1061 (2020). doi:10.1109/IGARSS39084.2020.9324237
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
IEEE 1058-1061 (2020). doi:10.1109/IGARSS39084.2020.9324237
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
Similarly to other scientific domains, Deep Learning (DL) holds great promises to fulfil the challenging needs of Remote Sensing (RS) applications. However, the increase in volume, variety and complexity of acquisitions that are carried out on a dail
Publikováno v:
IEEE 447-454 (2020). doi:10.1109/CoG47356.2020.9231802
2020 IEEE Conference on Games (CoG) : [Proceedings]-IEEE, 2020
2020 IEEE Conference on Games (CoG) : [Proceedings]-IEEE, 20202020 IEEE Conference on Games (CoG), Osaka, Japan, 2020-08-24-2020-08-27
CoG
2020 IEEE Conference on Games (CoG) : [Proceedings]-IEEE, 2020
2020 IEEE Conference on Games (CoG) : [Proceedings]-IEEE, 20202020 IEEE Conference on Games (CoG), Osaka, Japan, 2020-08-24-2020-08-27
CoG
The Obstacle Tower Challenge is the task to master a procedurally generated chain of levels that subsequently get harder to complete. Whereas the most top performing entries of last year's competition used human demonstrations or reward shaping to le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1db47f86a987e2db89eb848dbfd3c91d
http://arxiv.org/abs/2004.00567
http://arxiv.org/abs/2004.00567
Publikováno v:
BMC Neuroscience
Studying a functional, biologically plausible neural network that performs a particular task is highly relevant for progress in both neuroscience and machine learning. Most tasks used to test the function of a simulated neural network are still very
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d6a8d848bd08ff5919ef9c283710f2f
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030598501
ISC Workshops
Cham : Springer, Lecture Notes in Computer Science 12321, 81-101 (2020). doi:10.1007/978-3-030-59851-8_6
High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science
High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer ScienceISC High Performance 2020, ISC 2020, Frankfurt, Germany, 2020-06-22-2020-06-25
High Performance Computing
ISC Workshops
Cham : Springer, Lecture Notes in Computer Science 12321, 81-101 (2020). doi:10.1007/978-3-030-59851-8_6
High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science
High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer ScienceISC High Performance 2020, ISC 2020, Frankfurt, Germany, 2020-06-22-2020-06-25
High Performance Computing
Using traditional computational fluid dynamics and aeroacoustics methods, the accurate simulation of aeroacoustic sources requires high compute resources to resolve all necessary physical phenomena. In contrast, once trained, artificial neural networ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33e7cc93e97c1996ae51420e6b7cfc30
https://doi.org/10.1007/978-3-030-59851-8_6
https://doi.org/10.1007/978-3-030-59851-8_6