Zobrazeno 1 - 10
of 217
pro vyhledávání: '"Jencova P"'
Autor:
Jenčová, Anna
We study higher order quantum maps in the context of a *-autonomous category of affine subspaces. We show that types of higher order maps can be identified with certain Boolean functions that we call type functions. By an extension of this identifica
Externí odkaz:
http://arxiv.org/abs/2411.09256
Autor:
Hiai, Fumio, Jenčová, Anna
We study the $\alpha$-$z$-R\'enyi divergences $D_{\alpha,z}(\psi\|\varphi)$ where $\alpha,z>0$ ($\alpha\ne1$) for normal positive functionals $\psi,\varphi$ on general von Neumann algebras, introduced in [S.~Kato and Y.~Ueda, arXiv:2307.01790] and [S
Externí odkaz:
http://arxiv.org/abs/2404.07617
Autor:
Jenčová, Anna, Pulmannová, Sylvia
Publikováno v:
Int J Theor Phys 62, 193 (2023)
For convex and sequential effect algebras, we study spectrality in the sense of Foulis. We show that under additional conditions (strong archimedeanity, closedness in norm and a certain monotonicity property of the sequential product), such effect al
Externí odkaz:
http://arxiv.org/abs/2312.13003
Autor:
Jenčová, Anna
Publikováno v:
Letters in Mathematical Physics, 114(1), 31 (2024)
A quantum channel is sufficient with respect to a set of input states if it can be reversed on this set. In the approximate version, the input states can be recovered within an error bounded by the decrease of the relative entropy under the channel.
Externí odkaz:
http://arxiv.org/abs/2303.11707
Autor:
Jenčová, Anna
Publikováno v:
Info. Geo. 7 (Suppl. 1), 377-395, (2024)
We review the construction of a quantum version of the exponential statistical manifold over the set of all faithful normal positive functionals on a von Neumann algebra. The construction is based on the relative entropy approach to state perturbatio
Externí odkaz:
http://arxiv.org/abs/2301.06906
Publikováno v:
J. Phys. A: Math. Theor. 56 (2023) 135301
No-broadcasting theorem is one of the most fundamental results in quantum information theory; it guarantees that the simplest attacks on any quantum protocol, based on eavesdropping and copying of quantum information, are impossible. Due to the funda
Externí odkaz:
http://arxiv.org/abs/2208.10341
Autor:
Jenčová, Anna, Pulmannová, Sylvia
Order unit spaces with comparability and spectrality properties as introduced by Foulis are studied. We define continuous functional calculus for order unit spaces with the comparability property and Borel functional calculus for spectral order unit
Externí odkaz:
http://arxiv.org/abs/2208.08740
Autor:
Jenčová, Anna
Publikováno v:
J. Phys. A: Math. Theor. 55 (2022), 434001
We study steering in the framework of general probabilistic theories. We show that for dichotomic assemblages, steering can be characterized in terms of a certain tensor cross norm, which is also related to a steering degree given by steering robustn
Externí odkaz:
http://arxiv.org/abs/2202.09109
Autor:
Jenčová, Anna, Pulmannová, Sylvia
Publikováno v:
Quantum 6, 849 (2022)
Effect algebras were introduced as an abstract algebraic model for Hilbert space effects representing quantum mechanical measurements. We study additional structures on an effect algebra $E$ that enable us to define spectrality and spectral resolutio
Externí odkaz:
http://arxiv.org/abs/2111.02166
Autor:
Jenčová, Anna, Pulmannová, Sylvia
Publikováno v:
Journal of Mathematical Analysis and Applications, 504 (2021),125360
Two approaches to spectral theory of order unit spaces are compared: the spectral duality of Alfsen and Shultz and the spectral compression bases due to Foulis. While the former approach uses the geometric properties of an order unit space in duality
Externí odkaz:
http://arxiv.org/abs/2102.01628