Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Jeha, Paul"'
Generative models such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise in sequential recommendation tasks. However, they face challenges, including posterior collapse and limited representation capacit
Externí odkaz:
http://arxiv.org/abs/2410.19429
Score-based models, trained with denoising score matching, are remarkably effective in generating high dimensional data. However, the high variance of their training objective hinders optimisation. We attempt to reduce it with a control variate, deri
Externí odkaz:
http://arxiv.org/abs/2408.12270
Autor:
Jeha, Paul, Bohlke-Schneider, Michael, Mercado, Pedro, Kapoor, Shubham, Nirwan, Rajbir Singh, Flunkert, Valentin, Gasthaus, Jan, Januschowski, Tim
Publikováno v:
Jeha, P, Bohlke-Schneider, M, Mercado, P, Kapoor, S, Nirwan, R S, Flunkert, V, Gasthaus, J & Januschowski, T 2022, ' PSA-GAN: Progressive Self Attention GANs for Synthetic Time Series ', Paper presented at The Tenth International Conference on Learning Representations, Virtual, 25/04/2022-29/04/2022 . < https://openreview.net/forum?id=Ix_mh42xq5w >
Realistic synthetic time series data of sufficient length enables practical applications in time series modeling tasks, such as forecasting, but remains a challenge. In this paper, we present PSA-GAN, a generative adversarial network (GAN) that gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1202::79177f98db5b8a1356b64525060df135
https://orbit.dtu.dk/en/publications/2e5681cb-d394-4bf7-a985-9994bda18d62
https://orbit.dtu.dk/en/publications/2e5681cb-d394-4bf7-a985-9994bda18d62