Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Jeffrey T. Neugebauer"'
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Cubo, Vol 25, Iss 2, Pp 251-272 (2023)
It has been shown that, under suitable hypotheses, boundary value problems of the form, $Ly+\lambda y=f,$ $BC y =0$ where $L$ is a linear ordinary or partial differential operator and $BC$ denotes a linear boundary operator, then there exists $\Lambd
Externí odkaz:
https://doaj.org/article/4c8eafb77ff44be795f0f595643d9295
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Foundations, Vol 2, Iss 4, Pp 885-897 (2022)
We construct a Green’s function for the three-term fractional differential equation −D0+αu+aD0+μu+f(t)u=h(t), 0
Externí odkaz:
https://doaj.org/article/8815d212f0424869bf4cc7e0a48b5a60
Publikováno v:
Mathematics, Vol 12, Iss 7, p 1000 (2024)
Sufficient conditions are obtained for a signed maximum principle for boundary value problems for Riemann–Liouville fractional differential equations with analogues of Neumann or periodic boundary conditions in neighborhoods of simple eigenvalues.
Externí odkaz:
https://doaj.org/article/e1d1242724c9464cad8e1cd21f4f5876
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Electronic Journal of Differential Equations, Vol 2021, Iss 62,, Pp 1-14 (2021)
Externí odkaz:
https://doaj.org/article/cb52d2a988aa4434bb2c83df0e88ad71
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 99,, Pp 1-20 (2019)
We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation $$ x(t)=\int^{T_2}_{T_1}G(t,s)f(x(s))\,ds, \quad t\in[T_1,T_2]. $$ Under certain conditions on G, we show the existence of positive and positive symmetric s
Externí odkaz:
https://doaj.org/article/29d87d3dbbc34778a6b02e87d5df77d3
Publikováno v:
Opuscula Mathematica, Vol 37, Iss 3, Pp 421-434 (2017)
For \(\alpha\in(1,2]\), the singular fractional boundary value problem \[D^{\alpha}_{0^+}x+f\left(t,x,D^{\mu}_{0^+}x\right)=0,\quad 0\lt t\lt 1,\] satisfying the boundary conditions \(x(0)=D^{\beta}_{0^+}x(1)=0\), where \(\beta\in(0,\alpha-1]\), \(\m
Externí odkaz:
https://doaj.org/article/25aff95df3964b30857e4905fe4ae0a6
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 297,, Pp 1-13 (2016)
We consider families of two-point boundary value problems for fractional differential equations where the fractional derivative is assumed to be the Riemann-Liouville fractional derivative. The problems considered are such that appropriate differe
Externí odkaz:
https://doaj.org/article/a2f6f37da27a4b4781191ae0f80b96fc
Autor:
Paul W. Eloe, Jeffrey T. Neugebauer
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 43,, Pp 1-10 (2014)
The theory of $u_0$-positive operators with respect to a cone in a Banach space is applied to the fractional linear differential equations $$ D_{0+}^{\alpha} u+\lambda_1p(t)u=0\quad\text{and}\quad D_{0+}^{\alpha} u+\lambda_2q(t)u=0, $$ $0< t< 1$,
Externí odkaz:
https://doaj.org/article/adf89e3497404733abd0fd5d06ddf3d7
Publikováno v:
Opuscula Mathematica, Vol 30, Iss 4, Pp 447-456 (2010)
An application is made of a new Avery et al. fixed point theorem of compression and expansion functional type in the spirit of the original fixed point work of Leggett and Williams, to obtain positive solutions of the second order right focal discret
Externí odkaz:
https://doaj.org/article/8dab3e7f497846ac8e64f985f1c247dd
Publikováno v:
Differential Equations & Applications. :325-333