Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Jeffrey Stopple"'
Autor:
Jeffrey Stopple
This 2003 undergraduate introduction to analytic number theory develops analytic skills in the course of studying ancient questions on polygonal numbers, perfect numbers and amicable pairs. The question of how the primes are distributed amongst all t
Autor:
Jay Jorgenson, Thomas Shemanske, Lejla Smajlovic, Stuart Walling, John Cremona, Eric Stade, Kathy Merrill, Jonathan Robbins, Rainer Schulze-Pillot, Solomon Friedberg, Jeffrey Hoffstein, Larry Gerstein, Audrey Terras, Jennifer Beineke, Samuele Anni, Jeffrey Stopple, Suzanne Caulk, YoungJu Choie, Misha Rudnev, Dorothy Wallace, Andrew Pollington, Jonathan Keating, Donna Janesky, Jim Brown
Publikováno v:
Notices of the American Mathematical Society. 70:1
Autor:
Jeffrey Stopple
Publikováno v:
Experimental Mathematics. 26:45-53
We seek to understand how the technical definition of Lehmer pair can be related to more analytic properties of the Riemann zeta function, particularly the location of the zeros of $\zeta^\prime(s)$. Because we are interested in the connection betwee
Autor:
Jeffrey Stopple
Publikováno v:
Rocky Mountain J. Math. 46, no. 5 (2016), 1701-1715
Motivated by the connection to the pair correlation of the Riemann zeros, we investigate the second derivative of the logarithm of the Riemann $\zeta $ function, in particular, the zeros of this function. Theorem~1.2 gives a zero-free region. Theorem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b30444d1b4ad5ced6e9bbc3176599d1
http://projecteuclid.org/euclid.rmjm/1481101232
http://projecteuclid.org/euclid.rmjm/1481101232
Autor:
Jeffrey Stopple
Publikováno v:
Acta Arithmetica. 156:283-291
Adapting a technique of Pintz, we give an elementary demonstration of the Deuring phenomenon: a zero of \zeta(s) off the critical line gives a lower bound on L(1,\chi). The necessary tools are Dirichlet's 'method of the hyperbola', Euler summation, s
Autor:
Jeffrey Stopple
Publikováno v:
Mathematics of Computation. 76:2051-2063
An algorithm is given to efficiently compute $L$-functions with large conductor in a restricted range of the critical strip. Examples are included for about 21000 dihedral Galois representations with conductor near $10^7$. The data shows good agreeme
Autor:
Jeffrey Stopple
Publikováno v:
Journal of Number Theory. 103(2):163-196
We present an elliptic curve analog of the Stark conjecture for the value of the L-function at s=0. Although implied by the general Beilinson conjectures, the approach here is very concrete. Several cases are proved.
Autor:
Jeffrey Stopple
Publikováno v:
A Primer of Analytic Number Theory. :327-374
Autor:
Jeffrey Stopple
Publikováno v:
Funct. Approx. Comment. Math. 51, no. 1 (2014), 23-41
Generalizing work of Polya, de Bruijn and Newman, we allow the backward heat equation to deform the zeros of quadratic Dirichlet L-functions. There is a real constant \Lambda_Kr (generalizing the de Bruijn-Newman constant \Lambda) such that for time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fcbee9f288f7dd1fddfb2da42836fe80
http://projecteuclid.org/euclid.facm/1411564614
http://projecteuclid.org/euclid.facm/1411564614
Autor:
Jeffrey Stopple
Publikováno v:
Acta Arithmetica. 72:299-309