Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Jeffrey Remmel"'
Autor:
Dun Qiu, Jeffrey Remmel
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 21 no. 2, Permutation..., Iss Permutation Patterns (2019)
Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set o
Externí odkaz:
https://doaj.org/article/d0858b07159e49b5972fe8f5224c58ed
Autor:
Jeffrey Remmel, Sai-nan Zheng
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 19 no. 1, Iss Combinatorics (2017)
The study of patterns in permutations associated with forests of binary shrubs was initiated by D. Bevan et al.. In this paper, we study five different types of rise statistics that can be associated with such permutations and find the generating fun
Externí odkaz:
https://doaj.org/article/ed7fb8b6ae4449ca895ea726b646e4ce
Autor:
Jeffrey Remmel, Mark Tiefenbruck
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AR,..., Iss Proceedings (2012)
We consider two recent open problems stating that certain statistics on various sets of combinatorial objects are equidistributed. The first, posed by Anders Claesson and Svante Linusson, relates nestings in matchings on $\{1,2,\ldots,2n\}$ to occurr
Externí odkaz:
https://doaj.org/article/3da9854d6bc84387b08696c96fb7beb3
Autor:
Miles Eli Jones, Jeffrey Remmel
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011)
In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1
Externí odkaz:
https://doaj.org/article/0a6ddf46764a4a8b8c347458c8f04eea
Autor:
Sarah K Mason, Jeffrey Remmel
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011)
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as
Externí odkaz:
https://doaj.org/article/fda6f44c9213446e8593fe5e11da86d7
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AK,..., Iss Proceedings (2009)
Let $P$ be a partially ordered set and consider the free monoid $P^{\ast}$ of all words over $P$. If $w,w' \in P^{\ast}$ then $w'$ is a factor of $w$ if there are words $u,v$ with $w=uw'v$. Define generalized factor order on $P^{\ast}$ by letting $u
Externí odkaz:
https://doaj.org/article/6b56060e3a9148a49d4d9e446434cd8c
Autor:
Anthony Mendes, Jeffrey Remmel
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included through
Publikováno v:
Scopus-Elsevier
University of Strathclyde
University of Strathclyde
The notion of a word-representable graph has been studied in a series of papers in the literature. A graph $G=(V,E)$ is word-representable if there exists a word $w$ over the alphabet $V$ such that letters $x$ and $y$ alternate in $w$ if and only if
Autor:
Anthony Mendes, Jeffrey Remmel
Publikováno v:
Counting with Symmetric Functions ISBN: 9783319236179
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b395b6c334b48abc23425f3c252de7ea
https://doi.org/10.1007/978-3-319-23618-6_2
https://doi.org/10.1007/978-3-319-23618-6_2
Autor:
Anthony Mendes, Jeffrey Remmel
Publikováno v:
Counting with Symmetric Functions ISBN: 9783319236179
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::61e3df36f02a872322ab30bed7bd7d1a
https://doi.org/10.1007/978-3-319-23618-6_7
https://doi.org/10.1007/978-3-319-23618-6_7