Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Jeff Jun Zhang"'
Autor:
Maico Cassel dos Santos, Tianyu Jia, Martin Cochet, Karthik Swaminathan, Joseph Zuckerman, Paolo Mantovani, Davide Giri, Jeff Jun Zhang, Erik Jens Loscalzo, Gabriele Tombesi, Kevin Tien, Nandhini Chandramoorthy, John-David Wellman, David Brooks, Gu-Yeon Wei, Kenneth Shepard, Luca P. Carloni, Pradip Bose
Publikováno v:
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design.
Autor:
Tianyu Jia, Paolo Mantovani, Maico Cassel Dos Santos, Davide Giri, Joseph Zuckerman, Erik Jens Loscalzo, Martin Cochet, Karthik Swaminathan, Gabriele Tombesi, Jeff Jun Zhang, Nandhini Chandramoorthy, John-David Wellman, Kevin Tien, Luca Carloni, Kenneth Shepard, David Brooks, Gu-Yeon Wei, Pradip Bose
Publikováno v:
ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC).
Autor:
Cheng Tan, Thierry Tambe, Jeff (Jun) Zhang, Bo Fang, Tong Geng, Gu-Yeon Wei, David Brooks, Antonino Tumeo, Ganesh Gopalakrishnan, Ang Li
Publikováno v:
Proceedings of the 36th ACM International Conference on Supercomputing.
Publikováno v:
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE).
Autor:
Serena Curzel, Nicolas Bohm Agostini, Reece Neff, Ankur Limaye, Jeff Jun Zhang, Vinay Amatya, Marco Minutoli, Vito Giovanni Castellana, Joseph Manzano, David Brooks, Gu-Yeon Wei, Fabrizio Ferrandi, Antonino Tumeo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83b05acabfc7bbd9fadaeae8ea6a63a3
https://hdl.handle.net/11311/1229400
https://hdl.handle.net/11311/1229400
Publikováno v:
2021 IEEE 34th International System-on-Chip Conference (SOCC).
Publikováno v:
ASAP
Brain-inspired hyperdimensional computing (HDC) is an emerging computational paradigm that has achieved success in various domains. HDC mimics brain cognition and lever-ages hyperdimensional vectors with fully distributed holographic representation a
Publikováno v:
IEEE Design & Test. 36:44-53
Editor’s note: Systolic array is embracing its renaissance after being accepted by Google TPU as the core computing architecture of machine learning acceleration. In this article, the authors propose two strategies to enhance fault tolerance of sys
RecPipe: Co-designing Models and Hardware to Jointly Optimize Recommendation Quality and Performance
Autor:
David Brooks, Samuel Hsia, Mark Wilkening, Javin Pombra, Gu-Yeon Wei, Hsien-Hsin S. Lee, Carole-Jean Wu, Jeff Jun Zhang, Udit Gupta
Publikováno v:
MICRO
Deep learning recommendation systems must provide high quality, personalized content under strict tail-latency targets and high system loads. This paper presents RecPipe, a system to jointly optimize recommendation quality and inference performance.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f35f998c8c252ba639d2c81f639e44c0
http://arxiv.org/abs/2105.08820
http://arxiv.org/abs/2105.08820
Autor:
Jeff Jun Zhang, Siddharth Garg
Publikováno v:
ICCAD
Deep neural networks (DNN) are increasingly being accelerated on application-specific hardware such as the Google TPU designed especially for deep learning. Timing speculation is a promising approach to further increase the energy efficiency of DNN a