Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Jebessa B. Mijena"'
Publikováno v:
Foundations, Vol 3, Iss 1, Pp 49-62 (2023)
In this paper, by using Jensen–Mercer’s inequality we obtain Hermite–Hadamard–Mercer’s type inequalities for a convex function employing left-sided (k, ψ)-proportional fractional integral operators involving continuous strictly increasing
Externí odkaz:
https://doaj.org/article/7bfdab0c720044948c7760425b8ce183
Publikováno v:
Axioms, Vol 11, Iss 9, p 482 (2022)
In this paper, we obtain some univariate and multivariate Ostrowski-type inequalities using the Atangana–Baleanu fractional derivative in the sense of Liouville–Caputo (ABC). The results obtained for both left and right ABC fractional derivatives
Externí odkaz:
https://doaj.org/article/c83c0e5ad05c42b8bd8f1e11f34d250d
Autor:
Elyse Renshaw, Jebessa B. Mijena
Publikováno v:
Asian Journal of Probability and Statistics. :1-11
This article studies Weightlifting results from the 2000-2016 Olympic Games for both males and females to determine the differences between gender performance. The data showed that there are considerable differences in the competitive level between m
Publikováno v:
Foundations; Volume 2; Issue 3; Pages: 607-616
In this paper, we give new Simpson’s type integral inequalities for the class of functions whose derivatives of absolute values are s-convex via generalized proportional fractional integrals. Some results in the literature are particular cases of o
Publikováno v:
Fractional Calculus and Applied Analysis. 19:1527-1553
In this paper we study non-linear noise excitation for the following class of space-time fractional stochastic equations in bounded domains: $$\partial^\beta_tu_t(x)=-\nu(-\Delta)^{\alpha/2} u_t(x)+I^{1-\beta}_t[\lambda \sigma(u)\stackrel{\cdot}{F}(t
Consider non-linear time-fractional stochastic reaction-diffusion equations of the following type, $$\partial^\beta_tu_t(x)=-\nu(-\Delta)^{\alpha/2} u_t(x)+I^{1-\beta}_t[b(u)+ \sigma(u)\stackrel{\cdot}{F}(t,x)]$$ in $(d+1)$ dimensions, where $\nu>0,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3490efd537c6359f238b6e91d435cc3
http://arxiv.org/abs/1803.05890
http://arxiv.org/abs/1803.05890
We will look at reaction–diffusion type equations of the following type, $$\begin{aligned} \partial ^\beta _tV(t,x)=-(-\Delta )^{\alpha /2} V(t,x)+I^{1-\beta }_t[V(t,x)^{1+\eta }]. \end{aligned}$$ ∂ t β V ( t , x ) = - ( - Δ ) α / 2 V ( t , x
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d71999f616f9ec8605df73efe445015f
Autor:
Erkan Nane, Jebessa B. Mijena
Publikováno v:
Potential Analysis. 44:295-312
We consider time fractional stochastic heat type equation $$\partial^{\beta}_{t}u_{t}(x)=-\nu(-{\Delta})^{\alpha/2} u_{t}(x)+I^{1-\beta}_{t}[\sigma(u)\overset{\cdot}{W}(t,x)] $$ in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2], $d
Autor:
Jebessa B. Mijena, Erkan Nane
Publikováno v:
Stochastic Processes and their Applications. 125:3301-3326
We consider non-linear time-fractional stochastic heat type equation ∂ t β u t ( x ) = − ν ( − Δ ) α / 2 u t ( x ) + I t 1 − β [ σ ( u ) W ⋅ ( t , x ) ] in ( d + 1 ) dimensions, where ν > 0 , β ∈ ( 0 , 1 ) , α ∈ ( 0 , 2 ] and d
Autor:
Jebessa B. Mijena, Erkan Nane
Publikováno v:
Proceedings of the American Mathematical Society. 142:1717-1731
Fractional derivatives can be used to model time delays in a diffusion process. When the order of the fractional derivative is distributed over the unit interval, it is useful for modeling a mixture of delay sources. In some special cases distributed