Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Jean-Marc Schlenker"'
Autor:
Jean-Marc Schlenker, Edward Witten
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 7, Pp 1-51 (2022)
Abstract In the AdS/CFT correspondence, amplitudes associated to connected bulk manifolds with disconnected boundaries have presented a longstanding mystery. A possible interpretation is that they reflect the effects of averaging over an ensemble of
Externí odkaz:
https://doaj.org/article/d1bec7a5e43b41cd8ddcd50401f3b522
Autor:
Miguel Acosta, Jean-Marc Schlenker
Publikováno v:
The Mathematical Intelligencer. 43:130-133
We provide a simple proof of Pascal's Theorem on cyclic hexagons, as well as a generalization by Mobius, using hyperbolic geometry.
We study a notion of "width" for Jordan curves in CP1, paying special attention to the class of quasicircles. The width of a Jordan curve is defined in terms of the geometry of its convex hull in hyperbolic three-space. A similar invariant in the set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99e25d62911304bac13a8aab1868f276
http://orbilu.uni.lu/handle/10993/47426
http://orbilu.uni.lu/handle/10993/47426
Autor:
Jean-Marc Schlenker, Louis Merlin
Let $\lambda_-$ and $\lambda_+$ be two bounded measured laminations on the hyperbolic disk $\mathbb H^2$, which "strongly fill" (definition below). We consider the left earthquakes along $\lambda_-$ and $\lambda_+$, considered as maps from the univer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33fa43118abacf552481e4f06b48bc0b
http://orbilu.uni.lu/handle/10993/43578
http://orbilu.uni.lu/handle/10993/43578
Autor:
Jean-Marc Schlenker
Publikováno v:
Jean-Marc Schlenker
Quasifuchsian hyperbolic manifolds, or more generally convex co-compact hyperbolic manifolds, have infinite volume, but they have a well-defined ``renormalized'' volume. We outline some relations between this renormalized volume and the volume, or mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64c6f3bba550d0e75752ee048e59621d
http://orbilu.uni.lu/handle/10993/39407
http://orbilu.uni.lu/handle/10993/39407
Autor:
Jean-Marc Schlenker, Qiyu Chen
Publikováno v:
Annales de L'Institut Henri Poincaré. Analyse Non Linéaire, 36(1), 181-216. Netherlands: Elsevier (2019).
Annales DE l'Institut Henri Poincare C, Analyse Non Lineaire
Annales DE l'Institut Henri Poincare C, Analyse Non Lineaire
We prove that any hyperbolic end with particles (cone singularities along infinite curves of angles less than $\pi$) admits a unique foliation by constant Gauss curvature surfaces. Using a form of duality between hyperbolic ends with particles and co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9aa9371f76ec7b692eed0b5815e61e3f
http://orbilu.uni.lu/handle/10993/33901
http://orbilu.uni.lu/handle/10993/33901
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 17:853-912
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\unicode[STIX]{x2202}M$ has dimension $n$ even. Its definition depends on the choice of metric $h_{0}$ on $\unicode[S
Publikováno v:
Journal of the Institute of Mathematics of Jussieu
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2018, 17 (4), pp.853--912
Journal of the Institute of Mathematics of Jussieu, 2018, 17 (4), pp.853--912
HAL
Journal de l'institut de mathématiques de Jussieu, 17(4), 853-912. Cambridge, UK: Cambridge University Press (2018).
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2018, 17 (4), pp.853--912
Journal of the Institute of Mathematics of Jussieu, 2018, 17 (4), pp.853--912
HAL
Journal de l'institut de mathématiques de Jussieu, 17(4), 853-912. Cambridge, UK: Cambridge University Press (2018).
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\pl M$ has dimension $n$ even. Its definition depends on the choice of metric $h_0$ on $\partial M$ in the conformal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49099c1d17cf7046ba3c73bd95c8b312
https://hal.archives-ouvertes.fr/hal-00806380v2/file/renormvolume220915.pdf
https://hal.archives-ouvertes.fr/hal-00806380v2/file/renormvolume220915.pdf
Autor:
Hao Chen, Jean-Marc Schlenker
We study convex polyhedra in $\mathbb{R}\mathbb{P}^3$ with all their vertices on a sphere. We do not require, in particular, that the polyhedra lie in the interior of the sphere, hence the term "weakly inscribed". Such polyhedra can be interpreted as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f41505d11272bfcb8007441cfc92c27
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, Springer Verlag, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
Communications in Mathematical Physics, 2014, 327 (3), pp.691-735. ⟨10.1007/s00220-014-2020-2⟩
We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities of angles less than $2\pi$ along a time-like graph $\Gamma$. To each such space we associate a graph and a finite family of pairs of hyper