Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Jean-Luc Ploix"'
Publikováno v:
Molecules, Vol 29, Iss 13, p 3137 (2024)
In the organic laboratory, the 13C nuclear magnetic resonance (NMR) spectrum of a newly synthesized compound remains an essential step in elucidating its structure. For the chemist, the interpretation of such a spectrum, which is a set of chemical-sh
Externí odkaz:
https://doaj.org/article/9d7f4586dfd34076acae3d3b81dd5419
Publikováno v:
Molecules, Vol 28, Iss 19, p 6805 (2023)
The refractive index (RI) of liquids is a key physical property of molecular compounds and materials. In addition to its ubiquitous role in physics, it is also exploited to impart specific optical properties (transparency, opacity, and gloss) to mate
Externí odkaz:
https://doaj.org/article/cd5f59b02d7145eaa187fa9672d1b1d2
Autor:
Lucie Delforce, François Duprat, Jean-Luc Ploix, Jesus Fermín Ontiveros, Valentin Goussard, Véronique Nardello-Rataj, Jean-Marie Aubry
Publikováno v:
ACS Omega
ACS Omega, 2022, Acs Omega, 7, pp.38869-38881. ⟨10.1021/acsomega.2c04592⟩
ACS Omega, 2022, Acs Omega, 7, pp.38869-38881. ⟨10.1021/acsomega.2c04592⟩
International audience; The hydrophobicity of oils is a key parameter to design surfactant/oil/water (SOW) macro-, micro-, or nano-dispersed systems with the desired features. This essential physicochemical characteristic is quantitatively expressed
Autor:
François Duprat, Jean-Luc Ploix, Valentin Goussard, Jean-Marie Aubry, Gérard Dreyfus, Véronique Nardello-Rataj
Publikováno v:
Journal of Chemical Information and Modeling. 60:2012-2023
The viscosities of pure liquids are estimated at 25 °C, from their molecular structures, using three modeling approaches: group contributions, COSMO-RS σ-moment-based neural networks, and graph machines. The last two are machine-learning methods, w
Autor:
Jean-Luc Ploix, Vincent Gerbaud, Valentin Goussard, Véronique Nardello-Rataj, Francois Duprat, Jean-Marie Aubry, Gérard Dreyfus
Publikováno v:
Journal of Chemical Information and Modeling
Journal of Chemical Information and Modeling, 2017, 57 (12), pp.2986-2995. ⟨10.1021/acs.jcim.7b00512⟩
Journal of Chemical Information and Modeling, 2017, 57 (12), pp.2986-2995. ⟨10.1021/acs.jcim.7b00512⟩
International audience; The efficiency of four modeling approaches, namely group contributions, corresponding-states principle, σ-moment-based neural networks, and graph machines, are compared for the estimation of the surface tension (ST) of 269 pu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a26614b34818d84b71b995c97795eff
https://hal.science/hal-03512685/file/gerbaud_19578.pdf
https://hal.science/hal-03512685/file/gerbaud_19578.pdf