Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Jean-Baptiste Casteras"'
We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan-Hadamard manifolds. We show that the asymptotic behaviour of entire solitons depends heavily on the curvature of the manifo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::256bc243d19707690af2f67ee59c81f1
http://hdl.handle.net/10138/356706
http://hdl.handle.net/10138/356706
Publikováno v:
Journal of Dynamics and Differential Equations.
We study the fourth order Schr\"odinger equation with mixed dispersion on an $N$-dimensional Cartan-Hadamard manifold. At first, we focus on the case of the hyperbolic space. Using the fact that there exists a Fourier transform on this space, we prov
Assuming that there exists a translating soliton $u_\infty$ with speed $C$ in a domain $\Omega$ and with prescribed contact angle on $\partial\Omega$, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a871ea2ca6e364ee0593ca3ea9634be
http://hdl.handle.net/10138/341934
http://hdl.handle.net/10138/341934
In this paper, we construct invariant measures and global-in-time solutions for a fractional Schrödinger equation with a Moser–Trudinger type nonlinearity $$\begin{aligned} i\partial _t u= (-\Delta )^{\alpha }u+ 2\beta u e^{\beta |u|^2} \qquad \te
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c0a1493cf1b692d59fb931e68ce8f18
http://arxiv.org/abs/2110.01267
http://arxiv.org/abs/2110.01267
Autor:
Jean-Baptiste Casteras, Juraj Földes
We study singular radially symmetric solution to the Lin-Ni-Takagi equation for a supercritical power non-linearity in dimension $N\geq 3$. It is shown that for any ball and any $k \geq 0$, there is a singular solution that satisfies Neumann boundary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::356194aead480855a1f44897b9f3c379
http://hdl.handle.net/10138/321645
http://hdl.handle.net/10138/321645
Autor:
Patrícia Klaser, Jaime Ripoll, Leonardo Prange Bonorino, Miriam Telichevesky, Jean-Baptiste Casteras
Publikováno v:
Calculus of Variations and Partial Differential Equations. 59
We study the Dirichlet problem for the following prescribed mean curvature PDE $$\begin{aligned} {\left\{ \begin{array}{ll} -{\text {div}}\dfrac{\nabla v}{\sqrt{1+|\nabla v|^{2}}}=f(x,v) \text { in }\Omega \\ v=\varphi \text { on }\partial \Omega , \
Publikováno v:
Mathematische Zeitschrift
We study the asymptotic Dirichlet problem for Killing graphs with prescribed mean curvature H in warped product manifolds M× ϱR. In the first part of the paper, we prove the existence of Killing graphs with prescribed boundary on geodesic balls und
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5f4e9cb3a657e631dc16c20f9f226db
http://hdl.handle.net/10138/315035
http://hdl.handle.net/10138/315035
We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold $M$ with only one end if $M$ has asymptotically non-negative sectional curva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63c664be3f8f10f5037ee3b428ed5db0
http://hdl.handle.net/10138/312016
http://hdl.handle.net/10138/312016
Publikováno v:
Journal of differential equations, 296
In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation [Formula presented] where N≥3, s∈[0,2), [Formula presented] and [Formula presented]. We extend results of E.N. Dancer, F. Gladiali, M. Grossi (2017)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8995bb3ef9d49628889dacbd85c1f97b
Publikováno v:
Potential Analysis
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
We study the Dirichlet problem at infinity on a Cartan-Hadamard manifold M of dimension n 2 for a large class of operators containing, in particular, the p-Laplacian and the minimal graph operator. We extend several existence results obtained for the