Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Jean Thomann"'
Publikováno v:
Studies in Applied Mathematics. 138:3-42
In this paper, we give new characterizations for the eigenvalues of the prolate wave equation as limits of the zeros of some families of polynomials: the coefficients of the formal power series appearing in the solutions near 0, 1 or ∞ (in the vari
Autor:
Frédéric Fauvet, Jean Thomann
Publikováno v:
Numerical Algorithms. 40:323-353
We establish resurgence properties for solutions of linear ordinary differential equations with polynomial coefficients, at an irregular–singular point of rank one and derive resurgence relations when applying alien derivations to these solutions.
Publikováno v:
Numerical Algorithms
Numerical Algorithms, Springer Verlag, 2009, 50 (2), pp.179-213. ⟨10.1007/s11075-008-9223-6⟩
Numerical Algorithms, Springer Verlag, 2009, 50 (2), pp.179-213. ⟨10.1007/s11075-008-9223-6⟩
International audience; We describe a general procedure for computing Stokes matrices for solutions of linear differential equations with polynomial coefficients. The algorithms developed make an automation of the calculations possible, for a wide cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f1e58555f96c47ecfd9609de208263f
https://hal.archives-ouvertes.fr/hal-00765592
https://hal.archives-ouvertes.fr/hal-00765592
Autor:
Jean Thomann
Publikováno v:
Numerische Mathematik. 58:503-535
Formulae for solutions of complex ordinary differential equations in the neighbourhood of irregular singularities contain almost every time divergent series. The Resummation Theory developed in the field of Analytic Functional Equations by J.P. Ramis
Publikováno v:
GEOPHYSICS. 48:1269-1273
Two bidimensional spline functions are applied to the interpolation and automatic contouring of data from a ground magnetic survey of the Rhinegraben, between Karlsruhe and Strasbourg. These bidimensional spline functions can be applied in the genera