Zobrazeno 1 - 10
of 93
pro vyhledávání: '"Jean Louis Foulley"'
Publikováno v:
PLoS ONE, Vol 5, Iss 8, p e11913 (2010)
BACKGROUND: The recent advent of high-throughput SNP genotyping technologies has opened new avenues of research for population genetics. In particular, a growing interest in the identification of footprints of selection, based on genome scans for ada
Externí odkaz:
https://doaj.org/article/7122c806f01342afb5c4f3d597b7ce2b
Autor:
Laurence Flori, Sébastien Fritz, Florence Jaffrézic, Mekki Boussaha, Ivo Gut, Simon Heath, Jean-Louis Foulley, Mathieu Gautier
Publikováno v:
PLoS ONE, Vol 4, Iss 8, p e6595 (2009)
Dairy cattle breeds have been subjected over the last fifty years to intense artificial selection towards improvement of milk production traits. In this study, we performed a whole genome scan for differentiation using 42,486 SNPs in the three major
Externí odkaz:
https://doaj.org/article/bf021d76e72540cba7adcb4431b68fe5
Autor:
Jean-Louis Foulley
Publikováno v:
The American Statistician. 74:101-102
Benjamin and Berger (henceforth referred to as BB) pertinently advocated the users of NHST to convert p-values into Bayes factors according to a very simple, if not magic, formula: BFB=(−ep log p)−...
Autor:
Jean-Louis Foulley, L. Ollivier
Publikováno v:
Conservation Genetics. 14:1285-1290
Gene diversity and allelic diversity are both recognized as useful criteria for establishing priorities of conservation. Similarly to gene diversity partitioning, based on variation of gene frequencies both within and between subpopulations, allelic
Autor:
Michael Watson, Mónica Pérez-Alegre, Michael Denis Baron, Céline Delmas, Peter Dovč, Mylène Duval, Jean-Louis Foulley, Juan José Garrido-Pavón, Ina Hulsegge, Florence Jaffrézic, Ángeles Jiménez-Marín, Miha Lavrič, Kim-Anh Lê Cao, Guillemette Marot, Daphné Mouzaki, Marco H Pool, Christèle Robert-Granié, Magali San Cristobal, Gwenola Tosser-Klopp, David Waddington, Dirk-Jan de Koning
Publikováno v:
Genetics Selection Evolution, Vol 39, Iss 6, Pp 669-683 (2007)
Watson, M, Perez-Alegre, M, Baron, M D, Delmas, C, Dovc, P, Duval, M, Foulley, J L, Garrido-Pavon, J J, Hulsegge, I, Jaffrezic, F, Jimenez-Marin, A, Lavric, M, Le Cao, K A, Marot, G, Mouzaki, D, Pool, M H, Robert-Granie, C, San Cristobal, M, Tosser-Klopp, G, Waddington, D & de Koning, D J 2007, ' Analysis of a simulated microarray dataset: comparison of methods for data normalisation and detection of differential expression (open access publication) ', Genetics Selection Evolution, vol. 39, no. 6, pp. 669-683 . https://doi.org/10.1051/gse:2007031
Genetics, Selection, Evolution : GSE
HAL
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2007, 39 (6), pp.669-683
Watson, M, Perez-Alegre, M, Baron, M D, Delmas, C, Dovc, P, Duval, M, Foulley, J L, Garrido-Pavon, J J, Hulsegge, I, Jaffrezic, F, Jimenez-Marin, A, Lavric, M, Le Cao, K A, Marot, G, Mouzaki, D, Pool, M H, Robert-Granie, C, San Cristobal, M, Tosser-Klopp, G, Waddington, D & de Koning, D J 2007, ' Analysis of a simulated microarray dataset: comparison of methods for data normalisation and detection of differential expression (open access publication) ', Genetics Selection Evolution, vol. 39, no. 6, pp. 669-683 . https://doi.org/10.1051/gse:2007031
Genetics, Selection, Evolution : GSE
HAL
Genetics Selection Evolution
Genetics Selection Evolution, BioMed Central, 2007, 39 (6), pp.669-683
Microarrays allow researchers to measure the expression of thousands of genes in a single experiment. Before statistical comparisons can be made, the data must be assessed for quality and normalisation procedures must be applied, of which many have b
Autor:
Isabelle Hue, Jean-Louis Foulley, Séverine A. Degrelle, Florence Jaffrézic, Guillemette Marot
Publikováno v:
Genetics Research
Genetics Research, Cambridge University Press (CUP), 2007, 89 (1), pp.19-25
Genet. Res. Camb
Genet. Res. Camb, 2007, 89(1), pp.19-25
Genetics Research, Cambridge University Press (CUP), 2007, 89 (1), pp.19-25
Genet. Res. Camb
Genet. Res. Camb, 2007, 89(1), pp.19-25
The importance of variance modelling is now widely known for the analysis of microarray data. In particular the power and accuracy of statistical tests for differential gene expressions are highly dependent on variance modelling. The aim of this pape