Zobrazeno 1 - 10
of 170
pro vyhledávání: '"Jean Bertoin"'
Autor:
Jean Bertoin
Fragmentation and coagulation are two natural phenomena that can be observed in many sciences and at a great variety of scales - from, for example, DNA fragmentation to formation of planets by accretion. This book, by the author of the acclaimed Lév
Autor:
Jean Bertoin, Hairuo Yang
Branching-stable processes have recently appeared as counterparts of stable subordinators, when addition of real variables is replaced by branching mechanisms for point processes. Here we are interested in their domains of attraction and describe exp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a60456c052f731aff22f4c76b644d23
https://www.zora.uzh.ch/id/eprint/221128/
https://www.zora.uzh.ch/id/eprint/221128/
Autor:
Jean Bertoin
Publikováno v:
Journal of Statistical Physics. 176:679-691
Construct recursively a long string of words w1. .. wn, such that at each step k, w k+1 is a new word with a fixed probability p $\in$ (0, 1), and repeats some preceding word with complementary probability 1 -- p. More precisely, given a repetition o
Publikováno v:
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2021, 57 (2), ⟨10.1214/20-AIHP1110⟩
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2021, 57 (2), ⟨10.1214/20-AIHP1110⟩
The genealogical structure of self-similar growth-fragmentations can be described in terms of a branching random walk. The so-called intrinsic area $\mathrm{A}$ arises in this setting as the terminal value of a remarkable additive martingale. Motivat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f8c49d1fb8eb13451055e2d999f206e
https://hal.archives-ouvertes.fr/hal-02996343
https://hal.archives-ouvertes.fr/hal-02996343
Autor:
Jean Bertoin
A reinforcement algorithm introduced by Simon (Biometrika 42(3/4):425–440, 1955) produces a sequence of uniform random variables with long range memory as follows. At each step, with a fixed probability $$p\in (0,1)$$ p ∈ ( 0 , 1 ) , $${\hat{U}}_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ea08c5a5ce9e8c317aeb0d14c8258c1
https://doi.org/10.5167/uzh-190455
https://doi.org/10.5167/uzh-190455
Autor:
Alexander R. Watson, Jean Bertoin
Growth-fragmentation processes describe the evolution of systems of cells which grow continuously and fragment suddenly; they are used in models of cell division and protein polymerisation. Typically, we may expect that in the long run, the concentra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59205810b571ce2743ae5a4fe66af0ba
https://www.zora.uzh.ch/id/eprint/193747/
https://www.zora.uzh.ch/id/eprint/193747/
Autor:
Jean Bertoin
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), 2236-2252
Dans une marche aleatoire a pas renforces, a chaque instant entier et avec une probabilite fixee $p\in (0,1)$, le marcheur repete un de ses precedents pas tire uniformement au hasard, et avec probabilite $1-p$ effectue un nouveau pas independant de l
Autor:
Jean Bertoin
Publikováno v:
Progress in Probability ISBN: 9783030607531
A noise reinforced Brownian motion is a centered Gaussian process $\hat B=(\hat B(t))_{t\geq 0}$ with covariance $E(\hat B(t)\hat B(s))=(1-2p)^{-1}t^ps^{1-p} \quad \text{for} \quad 0\leq s \leq t,$ where $p\in(0,1/2)$ is a reinforcement parameter. Ou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82b9eb372f4de36b6d6fb4c8b85227d2
https://hal.science/hal-02341310v2
https://hal.science/hal-02341310v2
Autor:
Jean Bertoin
Let $$X_1, X_2, \ldots $$ X 1 , X 2 , … be i.i.d. copies of some real random variable X. For any deterministic $$\varepsilon _2, \varepsilon _3, \ldots $$ ε 2 , ε 3 , … in $$\{0,1\}$$ { 0 , 1 } , a basic algorithm introduced by H.A. Simon yield
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d981552618a24b6c0ccbfdfd6d8d573d
https://hal.archives-ouvertes.fr/hal-02480479
https://hal.archives-ouvertes.fr/hal-02480479