Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Jean Baptiste Burie"'
Autor:
Frédéric Fabre, Jean‐Baptiste Burie, Arnaud Ducrot, Sébastien Lion, Quentin Richard, Ramsès Djidjou‐Demasse
Publikováno v:
Evolutionary Applications, Vol 15, Iss 1, Pp 95-110 (2022)
Abstract We have modeled the evolutionary epidemiology of spore‐producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection‐age structure and gen
Externí odkaz:
https://doaj.org/article/580f664f2a84495a8997b0aaa94f54de
Autor:
Ramsès Djidjou-Demasse, Frédéric Fabre, Sébastien Lion, Arnaud Ducrot, Quentin Richard, Jean-Baptiste Burie
Publikováno v:
Evolutionary Applications
Evolutionary Applications, 2022, pp.95-110. ⟨10.1111/eva.13328⟩
Evolutionary Applications, Vol 15, Iss 1, Pp 95-110 (2022)
Evolutionary Applications, Blackwell, 2022, ⟨10.1111/eva.13328⟩
Evolutionary Applications, Blackwell, 2021, ⟨10.1111/eva.13328⟩
Evolutionary Applications, 2022, pp.95-110. ⟨10.1111/eva.13328⟩
Evolutionary Applications, Vol 15, Iss 1, Pp 95-110 (2022)
Evolutionary Applications, Blackwell, 2022, ⟨10.1111/eva.13328⟩
Evolutionary Applications, Blackwell, 2021, ⟨10.1111/eva.13328⟩
International audience; We have modeled the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age struct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4533270ffe4e02c25c50fd5ce54139b5
https://hal.science/hal-03465168/file/Fabre_EvolApp_2021.pdf
https://hal.science/hal-03465168/file/Fabre_EvolApp_2021.pdf
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2019, 267 (2), pp.1467-1509. ⟨10.1016/j.jde.2019.02.012⟩
Journal of Differential Equations, Elsevier, 2019, 267 (2), pp.1467-1509. ⟨10.1016/j.jde.2019.02.012⟩
In this work we study the travelling wave solutions for a spatially distributed system of equations modelling the evolutionary epidemiology of plant-pathogen interaction. Here the mutation process is described using a non-local convolution operator i
In this work we consider an epidemic system modelling the evolution of a spore-producing pathogen within a multi-host population of plants. Here we focus our analysis on the study of the stationary states. We first discuss the existence of such nontr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::acda7de3c7577c79aa09be2987d6fafe
https://hal.archives-ouvertes.fr/hal-02319518v2/document
https://hal.archives-ouvertes.fr/hal-02319518v2/document
Publikováno v:
European Journal of Applied Mathematics
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2020, 31 (1), pp.84-110. ⟨10.1017/S0956792518000487⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), In press, ⟨10.1017/S0956792518000487⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2020, 31 (1), pp.84-110. ⟨10.1017/S0956792518000487⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), In press, ⟨10.1017/S0956792518000487⟩
International audience; This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. First we study the asymptotic behavi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df2ad32d1c7946d352b98028404e0a71
https://hal.archives-ouvertes.fr/hal-01874125/document
https://hal.archives-ouvertes.fr/hal-01874125/document
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2019, 22 (11), ⟨10.3934/dcdsb.2019225⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2020, 25 (6), pp.2223-2243. ⟨10.3934/dcdsb.2019225⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2019, 22 (11), ⟨10.3934/dcdsb.2019225⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2020, 25 (6), pp.2223-2243. ⟨10.3934/dcdsb.2019225⟩
This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. Using the variance of the dispersion in the phenotype trait
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1d4239938cc66ee8a9e4bfabe3e6762
http://hdl.handle.net/20.500.12278/8584
http://hdl.handle.net/20.500.12278/8584
Publikováno v:
Discrete & Continuous Dynamical Systems. 41:4959
We investigate spreading properties of solutions for a spatially distributed system of equations modelling the evolutionary epidemiology of plant-pathogen interactions. In this work the mutation process is described using a non-local convolution oper
Autor:
Ramsès Djidjou-Demasse, Frédéric Fabre, Quentin Richard, Sébastien Lion, Jean-Baptiste Burie, Arnaud Ducrot
We model the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age structure and genetic composition of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cdd3ad3ce68d860e20a686f989b124f8
https://doi.org/10.1101/423467
https://doi.org/10.1101/423467
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2017, 22 (7), pp.2879-2905. ⟨10.3934/dcdsb.2017155⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2017, 22 (7), pp.2879-2905. ⟨10.3934/dcdsb.2017155⟩
A mathematical model describing the propagation of fungal diseases in plants is proposed. The model takes into account both chronological age and age since infection. We investigate and fully characterize the large time behaviour of the solutions. Ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46706ded67326e70a350002193b090d8
https://hal.archives-ouvertes.fr/hal-01921367
https://hal.archives-ouvertes.fr/hal-01921367
Autor:
Arnaud Ducrot, Jean Baptiste Burie
Publikováno v:
Mathematical Methods in the Applied Sciences
Mathematical Methods in the Applied Sciences, Wiley, 2015
Mathematical Methods in the Applied Sciences, Wiley, 2015
The aim of this article is to derive an asymptotic two-scale model for the propagation of a fungal disease over a large vineyard. The original model is based on a singularly perturbed system of two linear reaction-diffusion equations coupled with a s