Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Jean, Hounkpè"'
Autor:
Ernestina Annan, William Amponsah, Kwaku Amaning Adjei, Markus Disse, Jean Hounkpè, Ernest Biney, Albert Elikplim Agbenorhevi, Wilson Agyei Agyare
Publikováno v:
Scientific African, Vol 25, Iss , Pp e02262- (2024)
The rapid increase in population and urban development are exacerbating the transformation of natural environments into unnatural forms. While detailed assessment of the environment is beneficial for efficient ecosystem system management, it can also
Externí odkaz:
https://doaj.org/article/3382085f0a2a4d49a36c8424d19d758b
Autor:
N'da Jocelyne Maryse Christine Amichiatchi, Jean Hounkpè, Gneneyougo Emile Soro, Ojelabi Oluwatoyin Khadijat, Isaac Larbi, Andrew Manoba Limantol, Abdul-Rauf Malimanga Alhassan, Tie Albert Goula Bi, Agnidé Emmanuel Lawin
Publikováno v:
Journal of Water and Climate Change, Vol 15, Iss 2, Pp 392-406 (2024)
The purpose of this study is to analyse trends in annual rainfall extremes over five watersheds within Côte d'Ivoire using observed (1976–2017) and projected (2020–2050) rainfall data from the fourth version of the Rossby Centre regional atmosph
Externí odkaz:
https://doaj.org/article/5e959438d9a941d19602b180398385a6
Autor:
Batablinlè, Lamboni, Bazyomo, Serge Dimitri, Badou, Félicien D., Jean, Hounkpè, Hodabalo, Kamou, Zakari, Djibib, Banna, Magolmeena, Lawin, Agnidé Emmanuel
Publikováno v:
In Renewable Energy April 2024 224
Publikováno v:
Water Practice and Technology, Vol 18, Iss 9, Pp 2023-2044 (2023)
Trend analysis is important to understand the performance and features of hydrological variables over a long-time scale. This study analyses the hydroclimatic trends in precipitation, temperature (minimum and maximum) data from seven synoptic station
Externí odkaz:
https://doaj.org/article/0606741d55d74ad4bde8ba6eb46e6d62
Publikováno v:
GeoHazards, Vol 4, Iss 3, Pp 316-327 (2023)
With climate change and intensification of the hydrological cycle, the stationarity of hydrological variables is becoming questionable, requiring appropriate flood assessment models. Frequency analysis is widely used for flood forecasting. This study
Externí odkaz:
https://doaj.org/article/54a8fad0f6db478ba1a0c2023cac19ab
Autor:
Djigbo Félicien Badou, José Hounkanrin, Jean Hounkpè, Luc Ollivier Sintondji, Agnidé Emmanuel Lawin
Publikováno v:
Advances in Meteorology, Vol 2023 (2023)
Cotonou, the economic capital of Benin, is suffering from the impacts of climate change, particularly evident through recurrent floods. To effectively manage these floods and address this issue, it is crucial to have a deep understanding of return pe
Externí odkaz:
https://doaj.org/article/5f6c042de05f42cc9efa9071faf8ad47
Autor:
N’da Jocelyne Maryse Christine Amichiatchi, Gneneyougo Emile Soro, Jean Hounkpè, Tie Albert Goula Bi, Agnidé Emmanuel Lawin
Publikováno v:
Hydrology, Vol 10, Iss 1, p 6 (2022)
Climate change has had strong impacts on water resources over the past decades in Côte d’Ivoire, but these impacts on hydrological extremes remain largely unknown in most watersheds. Thus, this work aimed to evaluate the trends and breakpoints in
Externí odkaz:
https://doaj.org/article/cd12b6a2d14246be867a4ccabf99d833
Autor:
Maha Al-Zu’bi, Sintayehu W. Dejene, Jean Hounkpè, Olga Laiza Kupika, Shuaib Lwasa, Mary Mbenge, Caroline Mwongera, Nadia S. Ouedraogo, N’ Datchoh Evelyne Touré
Publikováno v:
Nature Climate Change, 12(12), 1078-1084. Nature Publishing Group
Autor:
Aymar Yaovi Bossa, Audrey Adango, Djigbo Félicien Badou, Abel Afouda, Eric Adéchina Alamou, Luc Ollivier C. Sintondji, Jean Hounkpè, Eliezer Iboukoun Biao, Julien Adounkpè, Yacouba Yira
Publikováno v:
Proceedings of the International Association of Hydrological Sciences, Vol 384, Pp 187-194 (2021)
West African populations are increasingly exposed to heavy rainfall events which cause devastating floods. For the design of rainwater drainage facilities (to protect populations), practitioners systematically use the Gumbel distribution regardless o
Publikováno v:
Hydrology, Vol 2, Iss 4, Pp 210-229 (2015)
A statistical model to predict the probability and magnitude of floods in non-stationary conditions is presented. The model uses a time-dependent and/or covariate-dependent generalized extreme value (GEV) distribution to fit the annual maximal (AM) d
Externí odkaz:
https://doaj.org/article/7cd9e4b1e6e4465ca5b7d624c52ba2e7