Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Jayawardene, C. J."'
Let $G, H$ be finite graphs without loops or multiple edges and $K_n$ denote the complete graph on $n$ vertices. If for every red/blue colouring of edges of the complete graph $K_n$, there exists a red copy of $G$, or a blue copy of $H$, we will say
Externí odkaz:
http://arxiv.org/abs/1905.11380
Let $K_n$ denote the complete graph on $n$ vertices and $G, H$ be finite graphs. Consider a two-coloring of edges of $K_n$. When a copy of $G$ in the first color, red, or a copy of $H$ in the second color, blue is in $K_n$, we write $K_n\rightarrow (
Externí odkaz:
http://arxiv.org/abs/1903.10891
Harary's conjecture $r(C_3,G)\leq 2q+1$ for every isolated-free graph G with $q$ edges was proved independently by Sidorenko and Goddard and Klietman. In this paper instead of $C_3$ we consider $K_{2,k}$ and seek a sharp upper bound for $r(K_{2,k},G)
Externí odkaz:
http://arxiv.org/abs/1901.01552
Autor:
Jayawardene, C. J.
Let the star on $n$ vertices, namely $K_{1,n-1}$ be denoted by $S_n$. If every two coloring of the edges of a complete balanced multipartite graph $K_{j \times s}$ there is a copy of $S_n$ in the first color or a copy of $S_m$ in the second color, th
Externí odkaz:
http://arxiv.org/abs/1901.01436
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jayawardene, C. J.
Publikováno v:
Electronic Journal of Graph Theory & Applications; 2022, Vol. 10 Issue 1, p227-237, 11p