Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Jay Urbain"'
Autor:
Noor, Abu-El-Rub, Jay, Urbain, George, Kowalski, Kristen, Osinski, Robert, Spaniol, Mei, Liu, Bradley, Taylor, Lemuel R, Waitman
Publikováno v:
AMIA Annu Symp Proc
Patient privacy is a major concern when allowing data sharing and the flow of health information. Hence, de-identification and anonymization techniques are used to ensure the protection of patient health information while supporting the secondary use
Autor:
Ann Rosenthal, Dara Mickschl, Edith Burns, Elizabeth Neumann, Jay Urbain, Sergey Tarima, Steven Grindel
Publikováno v:
The Wiley Encyclopedia of Health Psychology. :301-310
Autor:
Peter S. LaViolette, John D. Bukowy, Sean D. McGarry, Allison Lowman, Jay Urbain, Ronald J. Nowling, Kenneth A. Iczkowski, Oliver Blasko, Alexander Barrington, Andrew S. Nencka, Anjishnu Banerjee
Publikováno v:
BHI
Prostate segmentation is a necessary pre-processing step for computer-aided detection and diagnosis algorithms for prostate disorders and associated cancers. Deep learning models like U-Net offer the potential for performing classification and segmen
Publikováno v:
Journal of the American Society for Information Science and Technology. 59:2008-2023
Autor:
Jay Urbain
Force-directed graph of diabetes mellitus and cad concepts extracted with distributional semantic model.Display Omitted NLP system to identify heart disease risk factors in diabetic patients over time.Employ named entity recognition, Bayesian statist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::412e235106bbd4dddd898bd593e6843e
https://europepmc.org/articles/PMC4984540/
https://europepmc.org/articles/PMC4984540/
Publikováno v:
VS@HLT-NAACL
Autor:
Jay Urbain
Publikováno v:
Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search.
The ability to extract new knowledge from large datasets is one of the most significant challenges facing society. The problem spans across domains from intelligence analysis and scientific research to basic web search. Current information extraction
Autor:
Ophir Frieder, Jay Urbain
Publikováno v:
Advances in Multidisciplinary Retrieval ISBN: 9783642130830
IRFC
IRFC
We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f604de3fac3b225997174bbbd9219bee
https://doi.org/10.1007/978-3-642-13084-7_6
https://doi.org/10.1007/978-3-642-13084-7_6
Publikováno v:
BMC Bioinformatics
DTMBIO
BMC Bioinformatics, Vol 10, Iss Suppl 3, p S3 (2009)
CIKM
DTMBIO
BMC Bioinformatics, Vol 10, Iss Suppl 3, p S3 (2009)
CIKM
We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential funct
Autor:
Jay Urbain
Publikováno v:
Proceedings of the 2nd international workshop on Data and text mining in bioinformatics.