Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Javadekar, Omkar"'
Let $R$ be a fibre product of standard graded algebras over a field. We study the structure of syzygies of finitely generated graded $R$-modules. As an application of this, we show that the existence of an $R$-module of finite regularity and infinite
Externí odkaz:
http://arxiv.org/abs/2404.07297
As a higher analogue of the edge ideal of a graph, we study the $t$-connected ideal $\operatorname{J}_{t}$. This is the monomial ideal generated by the connected subsets of size $t$. For trees, we show that $\operatorname{J}_{t}$ has a linear resolut
Externí odkaz:
http://arxiv.org/abs/2401.01046
Given a finitely generated module $M$ over a Noetherian local ring $R$, one would like to know when the corresponding associated graded module has a pure resolution over $G_{\mathfrak{m}}(R)$. In this article, we identify a complex of free $G_{\mathf
Externí odkaz:
http://arxiv.org/abs/2308.00654