Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Jaunet, Theo"'
The Robotics community has started to heavily rely on increasingly realistic 3D simulators for large-scale training of robots on massive amounts of data. But once robots are deployed in the real world, the simulation gap, as well as changes in the re
Externí odkaz:
http://arxiv.org/abs/2109.11801
Autor:
Kervadec, Corentin, Jaunet, Theo, Antipov, Grigory, Baccouche, Moez, Vuillemot, Romain, Wolf, Christian
Since its inception, Visual Question Answering (VQA) is notoriously known as a task, where models are prone to exploit biases in datasets to find shortcuts instead of performing high-level reasoning. Classical methods address this by removing biases
Externí odkaz:
http://arxiv.org/abs/2104.03656
Autor:
Jaunet, Theo, Kervadec, Corentin, Vuillemot, Romain, Antipov, Grigory, Baccouche, Moez, Wolf, Christian
Visual Question Answering systems target answering open-ended textual questions given input images. They are a testbed for learning high-level reasoning with a primary use in HCI, for instance assistance for the visually impaired. Recent research has
Externí odkaz:
http://arxiv.org/abs/2104.00926
We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment an
Externí odkaz:
http://arxiv.org/abs/1909.02982
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Workshop on Visualization for AI explainability (VISxAI)
Workshop on Visualization for AI explainability (VISxAI), Oct 2020, Salt-lake city, United States
Workshop on Visualization for AI explainability (VISxAI), Oct 2020, Salt-lake city, United States
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::03527f50820dcae7b956b5f395edc25a
https://hal.archives-ouvertes.fr/hal-03347249
https://hal.archives-ouvertes.fr/hal-03347249
Publikováno v:
Workshop on Visualization for AI explainability (VISxAI)
Workshop on Visualization for AI explainability (VISxAI), Oct 2019, Vancouver, Canada
Workshop on Visualization for AI explainability (VISxAI), Oct 2019, Vancouver, Canada
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::96f8448c6074701e22f6b35afdf342fc
https://hal.archives-ouvertes.fr/hal-03347241
https://hal.archives-ouvertes.fr/hal-03347241
Publikováno v:
Journée Visu 2019
Journée Visu 2019, May 2019, Paris, France
Journée Visu 2019, May 2019, Paris, France
National audience; We present RLMViz, a visual analytics interface to interpret the internal memory of an agent (e.g., a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated before each action of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::2a9c1981889f7143580895ac9b712e56
https://hal.archives-ouvertes.fr/hal-02140902/file/Journee_Visu_2019__DRLViz.pdf
https://hal.archives-ouvertes.fr/hal-02140902/file/Journee_Visu_2019__DRLViz.pdf
Publikováno v:
Journée Visu 2019
Journée Visu 2019, May 2019, Paris, France
Journée Visu 2019, May 2019, Paris, France
National audience; We present RLMViz, a visual analytics interface to interpret the internal memory of an agent (e.g., a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated before each action of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2a9c1981889f7143580895ac9b712e56
https://hal.archives-ouvertes.fr/hal-02140902
https://hal.archives-ouvertes.fr/hal-02140902
Autor:
Kuhnle, Andreas1 (AUTHOR) andreas.kuhnle@kit.edu, May, Marvin Carl1 (AUTHOR), Schäfer, Louis1 (AUTHOR), Lanza, Gisela1 (AUTHOR)
Publikováno v:
International Journal of Production Research. Oct2022, Vol. 60 Issue 19, p5812-5834. 23p. 9 Diagrams, 10 Charts, 2 Graphs.