Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Jason Phang"'
Autor:
Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d001219a43d433275d0b570784dae988
http://arxiv.org/abs/2204.06745
http://arxiv.org/abs/2204.06745
Autor:
Linda Moy, Taro Makino, Kyunghyun Cho, Yiqiu Shen, Laura Heacock, Zhe Huang, Nan Wu, Jason Phang, Jungkyu Park, S. Gene Kim, Krzysztof J. Geras
Publikováno v:
J Digit Imaging
Breast cancer is the most common cancer in women, and hundreds of thousands of unnecessary biopsies are done around the world at a tremendous cost. It is crucial to reduce the rate of biopsies that turn out to be benign tissue. In this study, we buil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6cdce670a993d586ee25810b45504d0
https://europepmc.org/articles/PMC8669066/
https://europepmc.org/articles/PMC8669066/
Autor:
Phu Mon Htut, William C. Huang, Samuel R. Bowman, Haokun Liu, Jason Phang, Clara Vania, Richard Yuanzhe Pang, Kyunghyun Cho, Dhara A. Mungra
Publikováno v:
ACL/IJCNLP (1)
Recent years have seen numerous NLP datasets introduced to evaluate the performance of fine-tuned models on natural language understanding tasks. Recent results from large pretrained models, though, show that many of these datasets are largely satura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6312188ae4bcb9814b2733c9e88f024
http://arxiv.org/abs/2106.00840
http://arxiv.org/abs/2106.00840
Autor:
Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, Samuel Bowman
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::deec7575f0315fb6b9b5b877d5291edc
Autor:
Yada Pruksachatkun, Ian Tenney, Haokun Liu, Philip Yeres, Samuel R. Bowman, Jason Phang, Alex Wang, Phu Mon Htut
Publikováno v:
ACL (demo)
We introduce jiant, an open source toolkit for conducting multitask and transfer learning experiments on English NLU tasks. jiant enables modular and configuration-driven experimentation with state-of-the-art models and implements a broad set of task
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a142207d49aa77bc9befc3b26a7ca2ef
Autor:
Richard Yuanzhe Pang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang, Yada Pruksachatkun, Clara Vania, Katharina Kann, Samuel R. Bowman, Jason Phang
Publikováno v:
ACL
While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However
Autor:
Samuel R. Bowman, Shikha Bordia, Yining Nie, Hagen Blix, Yu Cao, Anhad Mohananey, Jason Phang, Ioana Grosu, Wei Peng, Alicia Parrish, Alex Warstadt, Sheng-Fu Wang, Haokun Liu, Paloma Jeretic, Phu Mon Htut, Anna Alsop
Publikováno v:
EMNLP/IJCNLP (1)
Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work
Autor:
Yiqiu Shen, Jason Phang, Nan Wu, S. Gene Kim, Krzysztof J. Geras, Linda Moy, Jungkyu Park, Kyunghyun Cho
Publikováno v:
Machine Learning in Medical Imaging ISBN: 9783030326913
MLMI@MICCAI
MLMI@MICCAI
Deep learning models designed for visual classification tasks on natural images have become prevalent in medical image analysis. However, medical images differ from typical natural images in many ways, such as significantly higher resolutions and sma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbeeecacdebcbfa292c571b47240b9f6
https://doi.org/10.1007/978-3-030-32692-0_3
https://doi.org/10.1007/978-3-030-32692-0_3
Autor:
Naziya Samreen, Beatriu Reig, Kara Ho, Kyunghyun Cho, Jungkyu Park, Laura Heacock, Zhe Huang, Sushma Gaddam, Eric Kim, Yiming Gao, Linda Moy, Joshua D. Weinstein, Jason Phang, Nan Wu, Jiyon Lee, Yiqiu Shen, Alana A. Lewin, Masha Zorin, Ujas Parikh, Krzysztof J. Geras, S. Gene Kim, Krystal Airola, Stacey Wolfson, Hildegard B. Toth, Stephanie H Chung, Joe Katsnelson, Thibault Févry, Eralda Mema, Leng Leng Young Lin, Kristine Pysarenko, Esther Hwang, Stanisław Jastrzębski
Publikováno v:
IEEE transactions on medical imaging
We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200,000 exams (over 1,000,000 images). Our network achieves an AUC of 0.895 in predicting whether there is a cancer in the b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53329e18a25d244b7312111ada30eecd
Autor:
Jason Phang, Thibault Févry
Publikováno v:
CoNLL
In sentence compression, the task of shortening sentences while retaining the original meaning, models tend to be trained on large corpora containing pairs of verbose and compressed sentences. To remove the need for paired corpora, we emulate a summa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6bb3adcf338aaa8f6d3742fc2bf5951e
http://arxiv.org/abs/1809.02669
http://arxiv.org/abs/1809.02669