Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Jason O'Neill"'
Autor:
Jason O’Neill
Publikováno v:
Discrete Applied Mathematics. 334:63-67
Autor:
Dendreon Pharmaceuticals
Publikováno v:
Business Wire (English). 06/08/2020.
Autor:
Jason O’Neill, Sam Spiro
Publikováno v:
European Journal of Combinatorics. 110:103702
Autor:
Jason O’Neill, Jacques Verstraëte
Publikováno v:
Graphs and Combinatorics. 38
Autor:
Calum Buchanan, Alexander Clifton, Eric Culver, Jiaxi Nie, Jason O'Neill, Puck Rombach, Mei Yin
Given a finite simple graph $G$, an odd cover of $G$ is a collection of complete bipartite graphs, or bicliques, in which each edge of $G$ appears in an odd number of bicliques and each non-edge of $G$ appears in an even number of bicliques. We denot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cfac7d7164ff7def78dd0c03f256949
Autor:
Jacques Verstraëte, Jason O'Neill
Publikováno v:
The Electronic Journal of Combinatorics. 28
The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $n \geqslant k \geqslant t \geqslant 2$, we consider a collection of $k$ families $\mathcal{A}_i: 1 \leq i \leqslant k$ where
A convex geometric hypergraph or cgh consists of a family of subsets of a strictly convex set of points in the plane. There are eight pairwise nonisomorphic cgh's consisting of two disjoint triples. These were studied at length by Bra{\ss} (2004) and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26168de4044ce5e75f26bb7acc48a995
http://arxiv.org/abs/2010.11100
http://arxiv.org/abs/2010.11100
Publikováno v:
Contractor Magazine. Jul2019, Vol. 64 Issue 7, p36-36. 1/7p.
Autor:
Jason O'Neill, Jacques Verstraëte
Publikováno v:
Journal of Combinatorial Theory, Series A. 178:105369
For an integer d ≥ 2 , a family F of sets is d-wise intersecting if for any distinct sets A 1 , A 2 , … , A d ∈ F , A 1 ∩ A 2 ∩ … ∩ A d ≠ ∅ , and non-trivial if ⋂ A ∈ F A = ∅ . Hilton and Milner conjectured that for k ≥ d
Autor:
Jason O'Neill
Publikováno v:
The Electronic Journal of Combinatorics. 25
Tesler matrices are certain integral matrices counted by the Kostant partition function and have appeared recently in Haglund's study of diagonal harmonics. In 2014, Drew Armstrong defined a poset on such matrices and conjectured that the characteris