Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Jarret, Adrian"'
Autor:
Jarret, Adrian, Kashani, Sepand, Rué-Queralt, Joan, Hurley, Paul, Fageot, Julien, Simeoni, Matthieu
Aims: We address two issues for the adoption of convex optimization in radio interferometric imaging. First, a method for a fine resolution setup is proposed which scales naturally in terms of memory usage and reconstruction speed. Second, a new tool
Externí odkaz:
http://arxiv.org/abs/2406.01342
We consider a linear inverse problem whose solution is expressed as a sum of two components: one smooth and the other sparse. This problem is addressed by minimizing an objective function with a least squares data-fidelity term and a different regula
Externí odkaz:
http://arxiv.org/abs/2403.05204
Analysis and synthesis are key steps of the radio-interferometric imaging process, serving as a bridge between visibility and sky domains. They can be expressed as partial Fourier transforms involving a large number of non-uniform frequencies and sph
Externí odkaz:
http://arxiv.org/abs/2306.06007
Nous nous int\'eressons \`a la reconstruction parcimonieuse d'images \`a l'aide du probl\`eme d'optimisation r\'egularis\'e LASSO. Dans de nombreuses applications pratiques, les grandes dimensions des objets \`a reconstruire limitent, voire emp\^eche
Externí odkaz:
http://arxiv.org/abs/2204.13557
We propose a fast and scalable Polyatomic Frank-Wolfe (P-FW) algorithm for the resolution of high-dimensional LASSO regression problems. The latter improves upon traditional Frank-Wolfe methods by considering generalized greedy steps with polyatomic
Externí odkaz:
http://arxiv.org/abs/2112.02890
Autor:
Jarret, Adrian
Optimization-based problems have become of great interest for signal approximation purposes, as they achieved good accuracy results while being extremely flexible and versatile. In this work, we put our focus on the context of periodic signals sample
Externí odkaz:
http://arxiv.org/abs/2111.14632
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting appl
Externí odkaz:
http://arxiv.org/abs/2009.02085
Autor:
Jarret, Adrian
In the theory of random dynamical systems (RDS), individuals with different initial states follow a same law of motion that is stochastically changing with time | called extrinsic noise. In the present work, intrin- sic noises for each individual are
Externí odkaz:
http://arxiv.org/abs/1806.07411
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Nous nous intéressons à la reconstruction parcimonieuse d'images à l'aide du problème d'optimisation régularisé LASSO. Dans de nombreuses applications pratiques, les grandes dimensions des objets à reconstruire limitent, voire empêchent, l'ut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14cdce1278378d3c0ade87162c268262
https://infoscience.epfl.ch/record/293738
https://infoscience.epfl.ch/record/293738