Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Jarque, Xavier"'
In this paper we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a criti
Externí odkaz:
http://arxiv.org/abs/2405.08812
We consider the secant method $S_p$ applied to a real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the i
Externí odkaz:
http://arxiv.org/abs/2405.08791
We prove local connectivity of the boundaries of invariant simply connected attracting basins for a class of transcendental meromorphic maps. The maps within this class need not be geometrically finite or in class $\mathcal B$, and the boundaries of
Externí odkaz:
http://arxiv.org/abs/2309.01152
In this paper we study the connectivity of Fatou components for maps in a large family of singular perturbations. We prove that, for some parameters inside the family, the dynamical planes for the corresponding maps present Fatou components of arbitr
Externí odkaz:
http://arxiv.org/abs/2102.00864
We study the discrete dynamical system defined on a subset of $R^2$ given by the iterates of the secant method applied to a real polynomial $p$. Each simple real root $\alpha$ of $p$ has associated its basin of attraction $\mathcal A(\alpha)$ formed
Externí odkaz:
http://arxiv.org/abs/2006.01528
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Garijo, Antonio, Jarque, Xavier
We investigate the plane dynamical system given by the secant map applied to a polynomial $p$ having at least one multiple root of multiplicity $d>1$. We prove that the local dynamics around the fixed points associated to the roots of $p$ depend on t
Externí odkaz:
http://arxiv.org/abs/1907.09323
Autor:
Garijo, Antonio, Jarque, Xavier
We investigate the root finding algorithm given by the secant method applied to a real polynomial $p$ as a discrete dynamical system defined on $\mathbb R^2$. We study the shape and distribution of the basins of attraction associated to the roots of
Externí odkaz:
http://arxiv.org/abs/1812.10954
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $f$ be a function in the Eremenko-Lyubich class $\mathcal{B}$, and let $U$ be an unbounded, forward invariant Fatou component of $f$. We relate the number of singularities of an inner function associated to $f|_U$ with the number of tracts of $f$
Externí odkaz:
http://arxiv.org/abs/1807.07270