Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Jared Wunsch"'
Autor:
Dean Baskin, Jared Wunsch
Publikováno v:
Annales Henri Poincaré.
The Dirac equation in $\mathbb{R}^{1,3}$ with potential Z/r is a relativistic field equation modeling the hydrogen atom. We analyze the singularity structure of the propagator for this equation, showing that the singularities of the Schwartz kernel o
Autor:
Jared Wunsch, Sean Gomes
Publikováno v:
Annales Henri Poincaré. 23:1205-1237
We study semiclassical sequences of distributions $u_h$ associated to a Lagrangian submanifold of phase space $\lag \subset T^*X$. If $u_h$ is a semiclassical Lagrangian distribution, which concentrates at a maximal rate on $\lag,$ then the asymptoti
Autor:
Carl Wunsch, Jared Wunsch
Publikováno v:
Journal of Fluid Mechanics. 946
Maas (J. Fluid Mech., vol. 684, 2011, pp. 5–24) showed that, for an oscillating two-dimensional barotropic tide flowing over sub-critical topography of compact support, some topographic forms existed that produced non-radiating baroclinic disturban
Publikováno v:
Communications on Pure and Applied Mathematics. 74:2025-2063
It is well known that when the geometry and/or coefficients allow stable trapped rays, the solution operator of the Helmholtz equation (a.k.a. the resolvent of the Laplacian) grows exponentially through a sequence of real frequencies tending to infin
Publikováno v:
Pure Appl. Anal. 2, no. 1 (2020), 157-202
We study the resolvent for nontrapping obstacles on manifolds with Euclidean ends. It is well known that for such manifolds, the outgoing resolvent satisfies $\|\chi R(k) \chi\|_{L^2\to L^2}\leq C{k}^{-1}$ for ${k}>1$, but the constant $C$ has been l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df47c030548fe4d5af7c9564fb807cd2
https://projecteuclid.org/euclid.paa/1576206326
https://projecteuclid.org/euclid.paa/1576206326
Autor:
Jared Wunsch, Luc Hillairet
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 70 (4), pp.1715-1752. ⟨10.5802/aif.3355⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 70 (4), pp.1715-1752. ⟨10.5802/aif.3355⟩
We describe the resonances closest to the real axis generated by diffraction of waves among cone points on a manifold with Euclidean ends. These resonances lie asymptotically evenly spaced along a curve of the form $$\frac{\Im \lambda}{\log \left |\R
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c2c508fe81a45d228e412a9daf805ac
https://hal.archives-ouvertes.fr/hal-03386338
https://hal.archives-ouvertes.fr/hal-03386338
Publikováno v:
Communications in Mathematical Physics. 362:269-294
Let $H$ denote the harmonic oscillator Hamiltonian on $\mathbb{R}^d,$ perturbed by an isotropic pseudodifferential operator of order $1.$ We consider the Schr\"odinger propagator $U(t)=e^{-itH},$ and find that while $\operatorname{singsupp} \operator
Autor:
Jared Wunsch, G. Austin Ford
Publikováno v:
Advances in Mathematics. 304:1330-1385
Let ( X , g ) be a compact manifold with conic singularities. Taking Δ g to be the Friedrichs extension of the Laplace–Beltrami operator, we examine the singularities of the trace of the half-wave group e − i t Δ g arising from strictly diffrac
For the h-finite-element method (h-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91116fb7289235ed2c364417689b079c
Autor:
Jared Wunsch
Publikováno v:
Séminaire Laurent Schwartz — EDP et applications. :1-15
In this survey, we review some applications and extensions of the author's results with Richard Melrose on propagation of singularities for solutions to the wave equation on manifolds with conical singularities. These results mainly concern: the loca