Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Jared L. Aurentz"'
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
instname
¿In this paper we present an interpretable artificial intelligence, and its associated machine learning algorithm, that is capable of automatically learning the rules of a game whenever the rules ¿ the relationship between a player¿s current state
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19b49d3e235234af66f218dd6a259558
http://hdl.handle.net/10261/278638
http://hdl.handle.net/10261/278638
Publikováno v:
Mathematics of computation (Online) 88 (2019): 313–347. doi:10.1090/mcom/3338
info:cnr-pdr/source/autori:Aurentz J.; Mach T.; Robol L.; Vandebril R.; Watkins D. S./titolo:Fast and backward stable computation of the eigenvalues and eigenvectors of matrix polynomials/doi:10.1090%2Fmcom%2F3338/rivista:Mathematics of computation (Online)/anno:2019/pagina_da:313/pagina_a:347/intervallo_pagine:313–347/volume:88
info:cnr-pdr/source/autori:Aurentz J.; Mach T.; Robol L.; Vandebril R.; Watkins D. S./titolo:Fast and backward stable computation of the eigenvalues and eigenvectors of matrix polynomials/doi:10.1090%2Fmcom%2F3338/rivista:Mathematics of computation (Online)/anno:2019/pagina_da:313/pagina_a:347/intervallo_pagine:313–347/volume:88
In the last decade matrix polynomials have been investigated with the primary focus on adequate linearizations and good scaling techniques for computing their eigenvalues and eigenvectors. In this article we propose a new method for computing a facto
Publikováno v:
Computer Physics Communications. 220:332-340
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transf
Autor:
Lloyd N. Trefethen, Jared L. Aurentz
Publikováno v:
SIAM Review. 59:423-446
Every student of numerical linear algebra is familiar with block matrices and vectors. The same ideas can be applied to the continuous analogues of operators, functions, and functionals. It is shown here how the explicit consideration of block struct
Generalized matrix functions (GMFs) extend the concept of a matrix function to rectangular matrices via the singular value decomposition. Several applications involving directed graphs, Hamiltonian...
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9cb950be7d50d32c9804fb16341d532
https://hdl.handle.net/11384/79306
https://hdl.handle.net/11384/79306
Autor:
Jared L. Aurentz, Behnam Hashemi
Publikováno v:
Biblos-e Archivo. Repositorio Institucional de la UAM
instname
instname
We develop a simple two-step algorithm for enclosing Chebyshev expansions whose cost is linear in terms of the polynomial degree. The algorithm first transforms the expansion from Chebyshev to the Laurent basis and then applies the interval Horner me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ffcc71db6263bb4d87dd273d0baca33
http://hdl.handle.net/10486/694964
http://hdl.handle.net/10486/694964
Publikováno v:
A Panorama of Mathematics: Pure and Applied. :91-101
ispartof: pages:91-101 ispartof: Contemporary Mathematics vol:658 pages:91-101 ispartof: Conference on Mathematics and its Applications location:Kuwait date:15 Nov - 17 Nov 2014 status: published
Autor:
Lloyd N. Trefethen, Jared L. Aurentz
Chebfun and related software projects for numerical computing with functions are based on the idea that at each step of a computation, a function f ( x ) defined on an interval [ a , b ] is “rounded” to a prescribed precision by constructing a Ch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e76818c3af5f1935685ace37f3ef53bb
https://doi.org/10.1145/2998442
https://doi.org/10.1145/2998442
Publikováno v:
SIAM journal on matrix analysis and applications
39 (2018): 1245–1269. doi:10.1137/17M1152802
info:cnr-pdr/source/autori:Aurentz J.L.; Mach T.; Robol L.; Vandebril R.; Watkins D.S./titolo:Fast and backward stable computation of roots of polynomials. Part II: backward error analysis; companion matrix and companion pencil/doi:10.1137%2F17M1152802/rivista:SIAM journal on matrix analysis and applications (Print)/anno:2018/pagina_da:1245/pagina_a:1269/intervallo_pagine:1245–1269/volume:39
39 (2018): 1245–1269. doi:10.1137/17M1152802
info:cnr-pdr/source/autori:Aurentz J.L.; Mach T.; Robol L.; Vandebril R.; Watkins D.S./titolo:Fast and backward stable computation of roots of polynomials. Part II: backward error analysis; companion matrix and companion pencil/doi:10.1137%2F17M1152802/rivista:SIAM journal on matrix analysis and applications (Print)/anno:2018/pagina_da:1245/pagina_a:1269/intervallo_pagine:1245–1269/volume:39
This work is a continuation of "Fast and backward stable computation of roots of polynomials" by J.L. Aurentz, T. Mach, R. Vandebril, and D.S. Watkins, SIAM Journal on Matrix Analysis and Applications, 36(3): 942--973, 2015. In that paper we introduc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::625c9d5fc2096876e9533df4040ad89b