Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Jansen, Mikala Ørsnes"'
Autor:
Jansen, Mikala Ørsnes, Miller, Jeremy
We show that for nice enough $\mathbb{N}$-graded $\mathbb{E}_2$-algebras, a diagonal vanishing line in $\mathbb{E}_1$-homology of gives rise to slope $1$ homological stability. This is an integral version of a result by Kupers-Miller-Patzt.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/2407.01124
Autor:
Jansen, Mikala Ørsnes
We investigate stability properties of the reductive Borel-Serre categories; these were introduced as a model for unstable algebraic K-theory in previous work. We see that they exhibit better homological stability properties than the general linear g
Externí odkaz:
http://arxiv.org/abs/2405.02065
Autor:
Jansen, Mikala Ørsnes
We exploit the theory of $\infty$-stacks to provide some basic definitions and calculational tools regarding stratified homotopy theory of stratified topological stacks.
Comment: 28 pages. Comments welcome; v2 minor changes; v3 final accepted ve
Comment: 28 pages. Comments welcome; v2 minor changes; v3 final accepted ve
Externí odkaz:
http://arxiv.org/abs/2308.09550
Autor:
Jansen, Mikala Ørsnes
In 1984, Charney and Lee defined a category of stable curves and exhibited a rational homology equivalence from its geometric realisation to (the analytification of) the moduli stack of stable curves, also known as the Deligne-Mumford-Knudsen compact
Externí odkaz:
http://arxiv.org/abs/2308.09551
Autor:
Jansen, Mikala Ørsnes
Publikováno v:
In Journal of Pure and Applied Algebra November 2024 228(11)
Autor:
Clausen, Dustin, Jansen, Mikala Ørsnes
Let $A$ be an associative ring and $M$ a finitely generated projective $A$-module. We introduce a category $\operatorname{RBS}(M)$ and prove several theorems which show that its geometric realisation functions as a well-behaved unstable algebraic K-t
Externí odkaz:
http://arxiv.org/abs/2108.01924
Autor:
Jansen, Mikala Ørsnes
Publikováno v:
International Mathematics Research Notices, 2022
We identify the exit path $\infty$-category of the reductive Borel-Serre compactification as the nerve of a $1$-category defined purely in terms of rational parabolic subgroups and their unipotent radicals. As an immediate consequence, we identify th
Externí odkaz:
http://arxiv.org/abs/2012.10777
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jansen, Mikala Ørsnes
Publikováno v:
IMRN: International Mathematics Research Notices; Oct2023, Vol. 2023 Issue 19, p16394-16452, 59p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.