Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Jan-Philipp Schröder"'
Autor:
Ralf Schuetzhold, Christian Fey, Frederick Hakelberg, Philip Kiefer, Tobias Schaetz, U. Warring, Matthias Wittemer, Jan-Philipp Schröder
Publikováno v:
Philos Trans A Math Phys Eng Sci
Many phenomena described in relativistic quantum field theory are inaccessible to direct observations, but analogue processes studied under well-defined laboratory conditions can present an alternative perspective. Recently, we demonstrated an analog
Autor:
Jan Philipp Schröder
Publikováno v:
Israel Journal of Mathematics. 217:197-229
Given an arbitrary Riemannian metric on a closed surface, we consider length-minimizing geodesics in the universal cover. Morse and Hedlund proved that such minimal geodesics lie in bounded distance of geodesics of a Riemannian metric of constant cur
Publikováno v:
Nonlinearity. 30:912-942
We study the structure of the stable norm of Finsler metrics on the 2-torus with a focus to points of irrational slope. By our results, the stable norm detects KAM-tori and hyperbolicity in the geodesic flow. Moreover, we study the stable norm in som
Autor:
Jan-Philipp Schröder, Philip Kiefer, Tobias Schaetz, U. Warring, Ralf Schützhold, Frederick Hakelberg, Matthias Wittemer, Christian Fey
Publikováno v:
arXiv:1903.05523: https://arxiv.org/abs/1903.05523
Physical Review Letters 123(2019)18, 180502
Physical Review Letters 123(2019)18, 180502
Quantum theory predicts intriguing dynamics during drastic changes of external conditions. We switch the trapping field of two ions sufficiently fast to tear apart quantum fluctuations, i.e., create pairs of phonons and, thereby, squeeze the ions' mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3295ae36dcd0c0e0a6e663fc3d93670
https://www.hzdr.de/publications/Publ-29958-1
https://www.hzdr.de/publications/Publ-29958-1
Autor:
Jan Philipp Schröder
Publikováno v:
Journal of Topology and Analysis. :261-291
We study action-minimizing orbits in Tonelli Lagrangian systems on the 2-torus on fixed energy levels above Mañé's strict critical value. Our work generalizes the results of Morse, Hedlund and Bangert on minimal geodesics in Riemannian 2-tori. The
Autor:
Jan Philipp Schröder
Publikováno v:
Ergodic Theory and Dynamical Systems. 36:1989-2014
We study the Euler–Lagrange flow of a Tonelli Lagrangian on the 2-torus$\mathbb{T}^{2}$at a fixed energy level${\mathcal{E}}\subset T\mathbb{T}^{2}$strictly above Mañé’s strict critical value. We prove that, if for some rational direction${\it\
Autor:
Jan Philipp Schröder
Publikováno v:
Journal of Modern Dynamics. 9:147-167
We consider reversible Finsler metrics on the 2-sphere and the 2-torus, whose geodesic flow has vanishing topological entropy. Following a construction of A. Katok, we discuss examples of Finsler metrics on both surfaces with large ergodic components
Publikováno v:
Journal of Modern Dynamics. 8:75-91
Let $(M,g)$ be a compact Riemannian manifold of hyperbolic type, i.e $M$ is a manifold admitting another metric of strictly negative curvature. In this paper we study the geodesic flow restricted to the set of geodesics which are minimal on the unive
Publikováno v:
Nonlinearity; Mar2017, Vol. 30 Issue 3, p1-1, 1p
Autor:
Farina, Alberto
Publikováno v:
Discrete & Continuous Dynamical Systems - Series S; Aug2022, Vol. 15 Issue 8, p2209-2214, 6p