Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Jan-Erik Björk"'
Publikováno v:
Notions of Positivity and the Geometry of Polynomials ISBN: 9783034801416
We study subharmonic functions whose Laplacian is supported on a null set K ⊂ C and in connected components of C \ K admit harmonic extensions to larger sets. We prove that if such a function has a piecewise holomorphic derivative then it is locall
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::44e127a440a01760af5b227a618b3d14
https://doi.org/10.1007/978-3-0348-0142-3_4
https://doi.org/10.1007/978-3-0348-0142-3_4
Autor:
Jan-Erik Björk
Publikováno v:
The Legacy of Niels Henrik Abel ISBN: 9783642623509
The work Memoire sur une propriete generale d’une classe tres etendue de fonctions trancendantes by Niels Henrik Abel started a new era where geometry, algebra and complex analysis are brought together. It is remarkable that Abel already in 1826 de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f9c9aa67c36c602565b12670b82082e9
https://doi.org/10.1007/978-3-642-18908-1_20
https://doi.org/10.1007/978-3-642-18908-1_20
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
A coherent D X -module M whose characterstic variety has dimension dim(X) is called holonomic. Let M be a holonomic module. The involutivity of SS(M) implies that it is a conic Lagrangian analytic set in T*(X). Let {X α } be a Whitney stratification
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::69a62c1955953d990f39795a7cdb4cd9
https://doi.org/10.1007/978-94-017-0717-6_4
https://doi.org/10.1007/978-94-017-0717-6_4
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
This is a central chapter of this book where the class of regular holonomic D-modules is studied. A holonomic complex M on a complex manifold X is regular holonomic if its formal solution complex is equal to its analytic solution complex at every poi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cfd77fedb5db6c267fc2add9ba7816c3
https://doi.org/10.1007/978-94-017-0717-6_6
https://doi.org/10.1007/978-94-017-0717-6_6
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
In this chapter we study bounded complexes of D X -modules and perform various operations. We prove that the homological dimension of the abelian category of left D X -modules is equal to 2 · dim(X) + 1. for every complex manifold X.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df2b920c305101af3033245f5035f0e1
https://doi.org/10.1007/978-94-017-0717-6_3
https://doi.org/10.1007/978-94-017-0717-6_3
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f69734da4cca9db746dfd854f086fc8f
https://doi.org/10.1007/978-94-017-0717-6_9
https://doi.org/10.1007/978-94-017-0717-6_9
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
The first section treats analytic D-module theory on real analytic manifolds and some basic results concerned with extendible distributions is presented in section 2 as a preparation to section 3. There we prove that every regular holonomic D X -modu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc891327264bb2919d2ddaf37558d175
https://doi.org/10.1007/978-94-017-0717-6_8
https://doi.org/10.1007/978-94-017-0717-6_8
Autor:
Jan-Erik Björk
Publikováno v:
Analytic D-Modules and Applications ISBN: 9789048142385
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c4e3e18f79d2e40a370447cc45ad8930
https://doi.org/10.1007/978-94-017-0717-6_1
https://doi.org/10.1007/978-94-017-0717-6_1