Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Jan Kohlhaase"'
Autor:
Nicolas Dupré, Jan Kohlhaase
Let G denote a possibly discrete topological group admitting an open subgroup I which is pro-p. If H denotes the corresponding Hecke algebra over a field k of characteristic p, then we study the adjunction between H-modules and k-linear smooth G-repr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e79a1ed4bb00bfd02e36a2e53a7c9f4e
Autor:
Jan Kohlhaase
Publikováno v:
Memoirs of the American Mathematical Society. 279
LetGGbe the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristicpp. LetIIbe a pro-ppIwahori subgroup ofGGand letRRbe a commutative quasi-Frobenius ring. IfH=R[I∖G/I]H=R[I\backslas
Autor:
Jan Kohlhaase
Publikováno v:
Advances in Mathematics. 317:1-49
We develop a duality theory for admissible smooth representations of p-adic Lie groups on vector spaces over fields of characteristic p. To this end we introduce certain higher smooth duality functors and relate our construction to the Auslander dual
Autor:
Jan Kohlhaase, Benjamin Schraen
Publikováno v:
Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2012, 353 (1), pp.219-258. ⟨10.1007/s00208-011-0680-1⟩
Mathematische Annalen, Springer Verlag, 2012, 353 (1), pp.219-258. ⟨10.1007/s00208-011-0680-1⟩
Let G be the group of rational points of a split connected reductive group over a p-adic local field, and let Γ be a discrete and cocompact subgroup of G. Motivated by questions on the cohomology of p-adic symmetric spaces, we investigate the homolo
Autor:
Jan, Kohlhaase
Publikováno v:
東北數學雜誌. Second series = Tohoku mathematical journal. Second series. 63(2):217-254
Let $K$ be a nonarchimedean local field, let $h$ be a positive integer, and denote by $D$ the central division algebra of invariant $1/h$ over $K$. The modular towers of Lubin-Tate and Drinfeld provide period rings leading to an equivalence between a
Autor:
Jan Kohlhaase
Publikováno v:
Contributions in Mathematical and Computational Sciences ISBN: 9783642552441
Let G be a p-divisible formal group law over an algebraically closed field of characteristic p. We show that certain equivariant vector bundles on the universal deformation space of G give rise to pseudocompact modules over the Iwasawa algebra of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::caebbecfbf99eadc477b89437760b90d
https://doi.org/10.1007/978-3-642-55245-8_10
https://doi.org/10.1007/978-3-642-55245-8_10
Autor:
Jan Kohlhaase
We study the affine formal algebra$R$of the Lubin–Tate deformation space as a module over two different rings. One is the completed group ring of the automorphism group$\Gamma $of the formal module of the deformation problem, the other one is the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9c9fac36dafc7b1ea8dbf31b06640a2
Autor:
Jan Kohlhaase
Generalizing results of J.-M. Fontaine and A. Scholl, we describe the p-adic unitary not necessarily finite dimensional representations of the absolute Galois group of certain fields in terms of admissible φ-modules and admissible (φ, Γ)-modules.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::044e29a55a25e06ccd3dd72f6e03c2ac
Autor:
Jan Kohlhaase
Publikováno v:
Tohoku Math. J. (2) 63, no. 2 (2011), 217-254
Let $K$ be a nonarchimedean local field, let $h$ be a positive integer, and denote by $D$ the central division algebra of invariant $1/h$ over $K$. The modular towers of Lubin-Tate and Drinfeld provide period rings leading to an equivalence between a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8f175b03449f9d3b427976380c3c0ee
http://projecteuclid.org/euclid.tmj/1309952087
http://projecteuclid.org/euclid.tmj/1309952087