Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Jan Gmys"'
Autor:
Maxime Gobert, Jan Gmys, Jean-François Toubeau, Nouredine Melab, Daniel Tuyttens, François Vallée
Publikováno v:
Algorithms, Vol 15, Iss 12, p 446 (2022)
Bayesian Optimization (BO) with Gaussian process regression is a popular framework for the optimization of time-consuming cost functions. However, the joint exploitation of BO and parallel processing capabilities remains challenging, despite intense
Externí odkaz:
https://doaj.org/article/a0b29462f05a49ddb7270a9485027b4a
Autor:
Jan Gmys
Publikováno v:
INFORMS Journal on Computing
INFORMS Journal on Computing, In press, ⟨10.1287/ijoc.2022.1193⟩
INFORMS Journal on Computing, In press, ⟨10.1287/ijoc.2022.1193⟩
International audience; Makespan minimization in permutation flow-shop scheduling is a well-known hard combinatorial optimization problem. Among the 120 standard benchmark instances proposed by E. Taillard in 1993, 23 have remained unsolved for almos
Publikováno v:
Proceedings of the International Symposium on Combinatorial Search. 15:273-275
Inspired by the recent success of parallelized exact methods to solve difficult scheduling problems, we present preliminary results of a general parallel beam search framework for combinatorial optimization problems. Beam search is a constructive met
Autor:
Maxime Gobert, Jan Gmys, Jean-Francois Toubeau, Nouredine Melab, Daniel Tuyttens, Francois Vallee
Publikováno v:
IEEE Xplore
IPDPSw PDCO-Parallel / Distributed Combinatorics and Optimization
IPDPSw PDCO-Parallel / Distributed Combinatorics and Optimization, May 2022, Lyon (remote), France. ⟨10.1109/IPDPSW55747.2022.00133⟩
IPDPSw PDCO-Parallel / Distributed Combinatorics and Optimization
IPDPSw PDCO-Parallel / Distributed Combinatorics and Optimization, May 2022, Lyon (remote), France. ⟨10.1109/IPDPSW55747.2022.00133⟩
International audience; Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db4b635387644f9efb9d5ae6721365f6
https://hal.science/hal-03701671/document
https://hal.science/hal-03701671/document
Publikováno v:
PMAM '22: Proceedings of the Thirteenth International Workshop on Programming Models and Applications for Multicores and Manycores
13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM'22)
13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM'22), Apr 2022, Séoul, South Korea
13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM'22)
13th International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM'22), Apr 2022, Séoul, South Korea
International audience; The increase in complexity, diversity and scale of high performance computing environments, as well as the increasing sophistication of parallel applications and algorithms call for productivity-aware programming languages for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56d9ee0de112a06216f6d75c1c7db893
https://hal.science/hal-03629798/document
https://hal.science/hal-03629798/document
Autor:
Alexandre Quemy, Johann Dreo, Juan J. Merelo, Arnaud Liefooghe, Benjamin Bouvier, Marc Schoenauer, Jan Gmys, Sébastien Verel
Publikováno v:
GECCO Companion
The success of metaheuristic optimization methods has led to the development of a large variety of algorithm paradigms. However, no algorithm clearly dominates all its competitors on all problems. Instead, the underlying variety of landscapes of opti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::502a8e492b560a05769b084cb4dba792
Publikováno v:
Journal of computational science
Journal of computational science, Elsevier, 2020, 44, pp.101168. ⟨10.1016/j.jocs.2020.101168⟩
Journal of computational science, 2020, 44, pp.101168. ⟨10.1016/j.jocs.2020.101168⟩
Journal of computational science, Elsevier, 2020, 44, pp.101168. ⟨10.1016/j.jocs.2020.101168⟩
Journal of computational science, 2020, 44, pp.101168. ⟨10.1016/j.jocs.2020.101168⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aec89f87250a7ef70131d3b4d1a3f502
https://hal.inria.fr/hal-02919422
https://hal.inria.fr/hal-02919422
Publikováno v:
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation, 2020, 57, ⟨10.1016/j.swevo.2020.100720⟩
Swarm and Evolutionary Computation, Elsevier, 2020, 57, ⟨10.1016/j.swevo.2020.100720⟩
Swarm and Evolutionary Computation, 2020, 57, ⟨10.1016/j.swevo.2020.100720⟩
Swarm and Evolutionary Computation, Elsevier, 2020, 57, ⟨10.1016/j.swevo.2020.100720⟩
International audience; Parallel metaheuristics require programming languages that provide both, high performance and a high level of programmability. This paper aims at providing a useful data point to help practitioners gauge the difficult question
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7cecefe1a8adadd63950a0851522d07c
https://inria.hal.science/hal-02879767
https://inria.hal.science/hal-02879767
Autor:
Guillaume Briffoteaux, Romain Ragonnet, Jan Gmys, Nouredine Melab, Mohand Mezmaz, Maxime Gobert, Daniel Tuyttens
Publikováno v:
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation, 2020, pp.100717. ⟨10.1016/j.swevo.2020.100717⟩
Swarm and Evolutionary Computation, Elsevier, 2020, pp.100717. ⟨10.1016/j.swevo.2020.100717⟩
Swarm and Evolutionary Computation, 2020, pp.100717. ⟨10.1016/j.swevo.2020.100717⟩
Swarm and Evolutionary Computation, Elsevier, 2020, pp.100717. ⟨10.1016/j.swevo.2020.100717⟩
International audience; Surrogate-based optimization is widely used to deal with long-running black-box simulation-based objective functions. Actually, the use of a surrogate model such as Kriging or Artificial Neural Network allows to reduce the num
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fda2f2b93e211cee785a19a2838725c7
https://hal.science/hal-02767541
https://hal.science/hal-02767541
Publikováno v:
Future Generation Computer Systems
Future Generation Computer Systems, Elsevier, 2020, SI: On The Road to Exascale II: Advances on High Performance Computing and Simulations, 105, pp.196-209. ⟨10.1016/j.future.2019.11.011⟩
Future Generation Computer Systems, 2020, SI: On The Road to Exascale II: Advances on High Performance Computing and Simulations, 105, pp.196-209. ⟨10.1016/j.future.2019.11.011⟩
Future Generation Computer Systems, Elsevier, 2020, SI: On The Road to Exascale II: Advances on High Performance Computing and Simulations, 105, pp.196-209. ⟨10.1016/j.future.2019.11.011⟩
Future Generation Computer Systems, 2020, SI: On The Road to Exascale II: Advances on High Performance Computing and Simulations, 105, pp.196-209. ⟨10.1016/j.future.2019.11.011⟩
Due to the highly irregular nature and prohibitive execution times of Branch-and-Bound (B&B) algorithms applied to combinatorial optimization problems (COPs), their parallelization has received the se two last decades great attention. Indeed, signifi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9bcee97cdad7e1a3358d54e0852c9ac3
https://hal.archives-ouvertes.fr/hal-02371238/document
https://hal.archives-ouvertes.fr/hal-02371238/document