Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Jan Felipe van Diejen"'
Autor:
Jan Felipe van Diejen
Publikováno v:
Forum of Mathematics, Sigma, Vol 12 (2024)
The spectrum and orthogonal eigenbasis are computed of a tridiagonal matrix encoding a finite-dimensional reduction of the difference Lamé equation at the single-gap integral value of the coupling parameter. This entails the exact solution, in terms
Externí odkaz:
https://doaj.org/article/b9f80be4571846c892168e446222b017
Autor:
Jan Felipe van Diejen, Erdal Emsiz
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 077 (2013)
We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macd
Externí odkaz:
https://doaj.org/article/850d248d0cd84f4995e868ae5cbb67eb
Autor:
Jan Felipe van Diejen
Publikováno v:
Annales Henri Poincaré. 24:1877-1895
Autor:
Jan Felipe van Diejen, Tamás Görbe
Publikováno v:
Annales Henri Poincaré. 23:49-65
Through a finite-dimensional reduction of the difference Lame equation, an elliptic analog of the Kac–Sylvester tridiagonal matrix is found. We solve the corresponding finite discrete Lame equation by constructing an orthogonal basis of eigenvector
Autor:
Jan Felipe van Diejen, Tamás Görbe
Publikováno v:
Letters in Mathematical Physics, 112:66. SPRINGER
Upon solving a finite discrete reduction of the difference Heun equation, we arrive at an elliptic generalization of the Racah polynomials. We exhibit the three-term recurrence relation and the orthogonality relations for these elliptic Racah polynom
Autor:
Jan Felipe van Diejen, Tamás Görbe
Publikováno v:
Communications in Mathematical Physics, 392. Nature Publishing Group
We construct the orthogonal eigenbasis for a discrete elliptic Ruijsenaars type quantum particle Hamiltonian with hyperoctahedral symmetry. In the trigonometric limit the eigenfunctions in question recover a previously studied $q$-Racah type reductio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d521c27d25a6bcbeed981a383fd508be
https://research.rug.nl/en/publications/43659027-6f03-41cb-94ee-c72c9a464df2
https://research.rug.nl/en/publications/43659027-6f03-41cb-94ee-c72c9a464df2
Autor:
Jan Felipe van Diejen, Tamás Görbe
By means of a truncation condition on the parameters, the elliptic Ruijsenaars difference operators are restricted onto a finite lattice of points encoded by bounded partitions. A corresponding orthogonal basis of joint eigenfunctions is constructed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::267fa6579addd3e3b051a7f0eb50529d
http://arxiv.org/abs/2106.06512
http://arxiv.org/abs/2106.06512
Autor:
Jan Felipe van Diejen
Publikováno v:
Orthogonal Polynomials: Current Trends and Applications ISBN: 9783030561895
We show that the gradient flows associated with a recently found family of Morse functions converge exponentially to the roots of the symmetric continuous Hahn polynomials. By symmetry reduction the rate of the exponential convergence can be improved
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::960242cb807a92b011e81619a10f0385
https://doi.org/10.1007/978-3-030-56190-1_6
https://doi.org/10.1007/978-3-030-56190-1_6
Autor:
E. Emsiz, Jan Felipe van Diejen
Publikováno v:
Representation Theory, Special Functions and Painlevé Equations — RIMS 2015, H. Konno, H. Sakai, J. Shiraishi, T. Suzuki and Y. Yamada, eds. (Tokyo: Mathematical Society of Japan, 2018)
Starting from a recently found branching rule for the six-parameter family of symmetric Macdonald-Koornwinder polynomials, we arrive by degeneration at corresponding branching formulas for symmetric hypergeometric orthogonal polynomials of Wilson, co
Autor:
Jan Felipe van Diejen, Luc Vinet
There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal poly