Zobrazeno 1 - 10
of 130
pro vyhledávání: '"Jan Dirk Schmöcker"'
Autor:
Enrique Santiago-Iglesias, Jan Dirk Schmöcker, Jose Carpio-Pinedo, Juan Carlos García-Palomares, Wenzhe Sun
Publikováno v:
Findings (2023)
We explore how different socioeconomic groups adapt to the snowstorm Filomena that occurred in Madrid in 2021. A reverse interpretation of the resilience triangle is proposed, where smaller triangle areas indicate less resilient populations continuin
Externí odkaz:
https://doaj.org/article/d0052a0a1a40429ab79603dff1c13b2c
Publikováno v:
Findings (2023)
We analyse evacuation decisions with data from a survey among 10,384 survivers of the 2011 Great East Japan earthquake. The decisions of individuals and families to evacuate or stay are influenced by the Tsunami warning system as well as the behaviou
Externí odkaz:
https://doaj.org/article/ae8d05d42e724328ad786bbdb8e67649
Publikováno v:
Transportation Research Interdisciplinary Perspectives, Vol 13, Iss , Pp 100551- (2022)
This paper employs regression with ARIMA errors (RegARIMA) to quantify the impacts of multiple non-pharmaceutical interventions, daily new cases, seasonal and calendar effects, and other factors on activity trends across the timeline of the ongoing C
Externí odkaz:
https://doaj.org/article/d3b13c9196e5406fac0a13b3254ae3ba
Autor:
Jan Dirk Schmöcker, Ziang Yao
Publikováno v:
Transportmetrica B: Transport Dynamics. 11:783-800
Publikováno v:
Transportation Research Part A: Policy and Practice. 163:386-404
Publikováno v:
Energies, Vol 14, Iss 12, p 3633 (2021)
Ride-hailing with autonomous electric vehicles and shared autonomous electric vehicle (SAEV) systems are expected to become widely used within this decade. These electrified vehicles can be key enablers of the shift to intermittent renewable energy b
Externí odkaz:
https://doaj.org/article/f554900e8fe843cda8107eb435ff9912
Publikováno v:
Transportation. 49(1):185-211
In order to predict the monthly usage frequency of members of a car-sharing scheme by analysing the gradual change of behaviour over time, a new model is proposed based on the Markov Chains model with latent stages. The model accounts for changing pa
Publikováno v:
Environment and Planning B: Urban Analytics and City Science
We use a graph convolutional neural network (GCN) for regional development prediction with population, railway network density, and road network density of each municipality as development indicators. By structuring the long-term time series data fro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c1127c79e02ef5006155c135ee51257
https://hdl.handle.net/20.500.11850/557431
https://hdl.handle.net/20.500.11850/557431
Publikováno v:
Proceedings of the 12th International Scientific Conference on Mobility and Transport ISBN: 9789811983603
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2ab62f1c17dd7ca94de72d598e1fe0a
https://doi.org/10.1007/978-981-19-8361-0_8
https://doi.org/10.1007/978-981-19-8361-0_8