Zobrazeno 1 - 10
of 70
pro vyhledávání: '"James Tompkin"'
Publikováno v:
Computational Visual Media, Vol 10, Iss 2, Pp 295-308 (2024)
Abstract Lighting is crucial for portrait photography, yet the complex interactions between the skin and incident light are expensive to model computationally in graphics and difficult to reconstruct analytically via computer vision. Alternatively, t
Externí odkaz:
https://doaj.org/article/84b59fee72a74c9aa83c61ab6cebfcb1
Autor:
Daniel Haehn, John Hoffer, Brian Matejek, Adi Suissa-Peleg, Ali K. Al-Awami, Lee Kamentsky, Felix Gonda, Eagon Meng, William Zhang, Richard Schalek, Alyssa Wilson, Toufiq Parag, Johanna Beyer, Verena Kaynig, Thouis R. Jones, James Tompkin, Markus Hadwiger, Jeff W. Lichtman, Hanspeter Pfister
Publikováno v:
Informatics, Vol 4, Iss 3, p 29 (2017)
Connectomics has recently begun to image brain tissue at nanometer resolution, which produces petabytes of data. This data must be aligned, labeled, proofread, and formed into graphs, and each step of this process requires visualization for human ver
Externí odkaz:
https://doaj.org/article/6750feda017d4d63b2114e37d83cfaa2
Publikováno v:
Computers & Graphics. 107:220-230
Structure from motion (SfM) enables us to reconstruct a scene via casual capture from cameras at different viewpoints, and novel view synthesis (NVS) allows us to render a captured scene from a new viewpoint. Both are hard with casual capture and dyn
Publikováno v:
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
How deep neural networks can aid visualization perception research is a wide-open question. This paper provides insights from three perspectives—prediction, generalization, and interpretation—via training and analyzing deep convolutional neural n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::68fe5e8e9c155725b4f14850e7b5b849
https://doi.org/10.31219/osf.io/u3n5f
https://doi.org/10.31219/osf.io/u3n5f
Autor:
James Tompkin
Publikováno v:
Design Computation Input/Output 2022.
Neural fields are a new (and old!) approach to solving problems over spacetime via first-order optimization of a neural network. Over the past three years, combining neural fields with classic computer graphics approaches have allowed us to make sign
Publikováno v:
2022 IEEE International Conference on Computational Photography (ICCP).
Autor:
Donglai Wei, Siddhant Kharbanda, Sarthak Arora, Roshan Roy, Nishant Jain, Akash Palrecha, Tanav Shah, Shray Mathur, Ritik Mathur, Abhijay Kemkar, Anirudh Chakravarthy, Zudi Lin, Won-Dong Jang, Yansong Tang, Song Bai, James Tompkin, Philip H.S. Torr, Hanspeter Pfister
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Many video understanding tasks require analyzing multishot videos, but existing datasets for video object segmentation (VOS) only consider single-shot videos. To address this challenge, we collected a new dataset-YouMVaS-of 200 popular YouTube videos
Autor:
Jing Qian, Qi Sun, Curtis Wigington, Han L. Han, Tong Sun, Jennifer Healey, James Tompkin, Jeff Huang
Publikováno v:
CHI Conference on Human Factors in Computing Systems.