Zobrazeno 1 - 10
of 124
pro vyhledávání: '"James K. Knowles"'
Autor:
Rohan Abeyaratne, James K. Knowles
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are re
Autor:
James K. Knowles, Rohan Abeyaratne
Publikováno v:
Prof. Abeyaratne via Angie Locknar
Motivated by issues arising for discrete second-order conservation laws and their continuum limits (applicable, for example, to one-dimensional nonlinear spring—mass systems), here we study the corresponding issues in the simpler setting of first-o
Autor:
James K. Knowles
Publikováno v:
Journal of Elasticity. 98:13-23
Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximi
Autor:
James K. Knowles
Publikováno v:
Shock Waves. 17:421-432
The Hugoniot curve relates the pressure and volume behind a shock wave, with the temperature having been eliminated. This paper studies the Hugoniot curve behind a propagating sharp interface between two material phases for a solid in which an impact
Autor:
James K. Knowles
Publikováno v:
ZAMM. 88:64-73
This paper is concerned with “entropy conditions” for traffic flow models governed by one-dimensional nonlinear scalar conservation laws. The classical conditions of this type serve as selection principles used to overcome the lack of uniqueness
Autor:
James K. Knowles
Publikováno v:
Journal of Hyperbolic Differential Equations. :19-38
This paper is concerned with the circumstances under which the dissipative character of a one-dimensional scalar conservation law may be described by a formalism strictly analogous to that arising naturally in the dynamics of nonlinearly elastic mate
Publikováno v:
Structural Control and Health Monitoring. 13:1-6
Autor:
James K. Knowles
Publikováno v:
International Journal of Non-Linear Mechanics. 40:387-394
This paper describes a thermoelastic model for shock waves in uniaxial strain based on a subclass of the so-called materials of Mie–Gruneisen type. We compare the Hugoniot curve with the isotherms and isentropes for this model, and we construct the
Autor:
James K. Knowles
Publikováno v:
Mechanics Research Communications. 30:581-587
In uniaxial tension, the stress–strain curve for rubber changes curvature from concave to convex as the strain increases. For sudden tensile loading of a bar, a one-dimensional model that reflects this behavior leads to an under-determined problem
Autor:
James K. Knowles
Publikováno v:
Shock Waves. 12:137-144
Results of shock-wave experiments in solids often suggest a nearly-linear relation between the particle velocity behind the shock and the shock wave speed. The present note reconsiders the question of whether thermoelastic material models may be cons