Zobrazeno 1 - 10
of 116
pro vyhledávání: '"James D. Currie"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 22 no. 1, Iss Analysis of Algorithms (2020)
A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2
Externí odkaz:
https://doaj.org/article/6b5f4e37e2a04a9da3a0ea47152450ac
Autor:
James D. Currie, Lucas Mol
For a rational number $r$ such that $1
Comment: arXiv admin note: substantial text overlap with arXiv:1904.10029
Comment: arXiv admin note: substantial text overlap with arXiv:1904.10029
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac3002f7c3230de0e93eade28047a4d5
http://arxiv.org/abs/2006.07474
http://arxiv.org/abs/2006.07474
Autor:
James D. Currie, Jesse T. Johnson
We characterize exactly the lengths of binary circular words containing no squares other than 00, 11, and 0101. Key words: combinatorics on words, circular words, necklaces, square-free words, non-repetitive sequences
Comment: 12 pages, 4 tables
Comment: 12 pages, 4 tables
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ae99f7ea2ec8b159191f1327643d675
Publikováno v:
Theoretical Computer Science. 743:72-82
Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent
Publikováno v:
Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2019, 799, pp.140-148. ⟨10.1016/j.tcs.2019.10.006⟩
Theoretical Computer Science, Elsevier, 2019, 799, pp.140-148. ⟨10.1016/j.tcs.2019.10.006⟩
In a recent paper, one of us posed three open problems concerning squarefree arithmetic progressions in infinite words. In this note we solve these problems and prove some additional results.
Comment: 13 pages, 2 figures
Comment: 13 pages, 2 figures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90bdc7eb79ff24bc17090d5b7debb980
Autor:
Lucas Mol, James D. Currie
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030287955
WORDS
WORDS
For rational \(1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bfedff0ec2479bbe8729e27a60a3144b
https://doi.org/10.1007/978-3-030-28796-2_11
https://doi.org/10.1007/978-3-030-28796-2_11
Autor:
James D. Currie, Narad Rampersad
Publikováno v:
Theoretical Computer Science. 609:456-468
Consider the set of those binary words with no non-empty factors of the form x x x R . Du, Mousavi, Schaeffer, and Shallit asked whether this set of words grows polynomially or exponentially with length. In this paper, we demonstrate the existence of
A word is called $\beta$-free if it has no factors of exponent greater than or equal to $\beta$. The repetition threshold $\mathrm{RT}(k)$ is the infimum of the set of all $\beta$ such that there are arbitrarily long $k$-ary $\beta$-free words (or eq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e36ca83ebc49bc6b3a46baaf2fcaa78
http://arxiv.org/abs/1803.08145
http://arxiv.org/abs/1803.08145
While a characterization of unavoidable formulas (without reversal) is well-known, little is known about the avoidability of formulas with reversal in general. In this article, we characterize the unavoidable formulas with reversal that have at most
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd2cccbfeb0c83868fc221df141bf685
http://arxiv.org/abs/1703.10522
http://arxiv.org/abs/1703.10522
Autor:
Philip Lafrance, James D. Currie
For every pattern $p$ over the alphabet $\{x,y,x^R,y^R\}$, we specify the least $k$ such that $p$ is $k$-avoidable.
Comment: 15 pages, 1 figure
Comment: 15 pages, 1 figure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43270120564b313046d74d0f334c70fb
https://hdl.handle.net/10680/1754
https://hdl.handle.net/10680/1754