Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Jake Levinson"'
Autor:
Maria Monks Gillespie, Jake Levinson
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings, 28th... (2020)
We establish a combinatorial connection between the real geometry and the K-theory of complex Schubert curves Spλ‚q, which are one-dimensional Schubert problems defined with respect to flags osculating the rational normal curve. In a previous pape
Externí odkaz:
https://doaj.org/article/2522fa065fbc4fafb5182569494d2667
Autor:
Jake Levinson, Brooke Ullery
Publikováno v:
Proceedings of the American Mathematical Society. 150:4603-4618
In this paper, we examine linear conditions on finite sets of points in projective space implied by the Cayley–Bacharach condition. In particular, by bounding the number of points satisfying the Cayley–Bacharach condition, we force them to lie on
Autor:
Kevin Purbhoo, Jake Levinson
Publikováno v:
Inventiones mathematicae. 226:521-578
We prove a generalization of the Shapiro–Shapiro conjecture on Wronskians of polynomials, allowing the Wronskian to have complex conjugate roots. We decompose the real Schubert cell according to the number of real roots of the Wronski map, and defi
We provide a new geometric interpretation of the multidegrees of the (iterated) Kapranov embedding $\Phi_n:\overline{M}_{0,n+3}\hookrightarrow \mathbb{P}^1\times \mathbb{P}^2\times \cdots \times \mathbb{P}^n$, where $\overline{M}_{0,n+3}$ is the modu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::215422c5235c1dec000785a83cecc6af
http://arxiv.org/abs/2108.00050
http://arxiv.org/abs/2108.00050
Autor:
Jake Levinson
Publikováno v:
Notices of the American Mathematical Society. 69:1
Autor:
Jake Levinson, Nicolas Ford
Publikováno v:
Compositio Mathematica. 154:2205-2238
Boij-S\"oderberg theory characterizes syzygies of graded modules and sheaves on projective space. This paper continues earlier work with S. Sam, extending the theory to the setting of $GL_k$-equivariant modules and sheaves on Grassmannians. Algebraic
Autor:
Maria Gillespie, Jake Levinson
Publikováno v:
The Electronic Journal of Combinatorics. 26
We give local axioms that uniquely characterize the crystal-like structure on shifted tableaux developed in a previous paper by Gillespie, Levinson, and Purbhoo. These axioms closely resemble those developed by Stembridge for type A tableau crystals.
We develop a combinatorial rule to compute the real geometry of type B Schubert curves $S(\lambda_\bullet)$ in the orthogonal Grassmannian $\mathrm{OG}_n$, which are one-dimensional Schubert problems defined with respect to orthogonal flags osculatin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03ae44fd5a4fcf394d40dc51249356ff
Publikováno v:
Algebra Number Theory 12, no. 2 (2018), 285-303
We characterize the cone of GL-equivariant Betti tables of Cohen-Macaulay modules of codimension 1, up to rational multiple, over the coordinate ring of square matrices. This result serves as the base case for `Boij-S\"oderberg theory for Grassmannia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad16984fc6179480133f156d66fb60a9
https://projecteuclid.org/euclid.ant/1527040845
https://projecteuclid.org/euclid.ant/1527040845
We introduce coplactic raising and lowering operators $E'_i$, $F'_i$, $E_i$, and $F_i$ on shifted skew semistandard tableaux. We show that the primed operators and unprimed operators each independently form type A Kashiwara crystals (but not Stembrid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df1981733c9b3c265777e5848ffd4652
http://arxiv.org/abs/1706.09969
http://arxiv.org/abs/1706.09969