Zobrazeno 1 - 10
of 210
pro vyhledávání: '"Jaiswal, J. P."'
The goal of this study is to investigate the local convergence of a three-step Newton-Traub technique for solving nonlinear equations in Banach spaces with a convergence rate of five. The first order derivative of a nonlinear operator is assumed to s
Externí odkaz:
http://arxiv.org/abs/2203.00240
In this article, the local convergence analysis of the multi-step seventh order method is presented for solving nonlinear equations. The point worth noting in our paper is that our analysis requires a weak hypothesis where the Fr\'echet derivative of
Externí odkaz:
http://arxiv.org/abs/2112.06177
In this paper, the local convergence analysis of the multi-step seventh order method is presented for solving nonlinear equations assuming that the first-order Fr\'echet derivative belongs to the Lipschitz class. The significance of our work is that
Externí odkaz:
http://arxiv.org/abs/2112.04080
Autor:
Saxena, Akanksha, Jaiswal, J. P.
The motive of this paper is to discuss the local convergence of a two-step Newton type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies th
Externí odkaz:
http://arxiv.org/abs/2101.01361
Autor:
Gupta, Neha, Jaiswal, J. P.
The semi-local convergence analysis of a well defined and efficient two-step Secant method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is ext
Externí odkaz:
http://arxiv.org/abs/1905.01981
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Singh, Anuradha, Jaiswal, J. P.
This article concerned with the issue of solving a nonlinear equation with the help of iterative method where no any derivative evaluation is required per iteration. Therefore, this work contributes to a new class of optimal eighth-order Steffensen-t
Externí odkaz:
http://arxiv.org/abs/1404.3053
Autor:
Singh, Anuradha, Jaiswal, J. P.
The prime objective of this paper is to design a new family of eighth-order iterative methods by accelerating the order of convergence and efficiency index of well existing seventh-order iterative method of \cite{Soleymani1} without using more functi
Externí odkaz:
http://arxiv.org/abs/1403.6996
Autor:
Jaiswal, J. P.
The object of the present work is to present the new classes of third-order and fourth-order iterative methods for solving nonlinear equations. Our third-order method includes methods of Weerakoon \cite{Weerakoon}, Homeier \cite{Homeier2}, Chun \cite
Externí odkaz:
http://arxiv.org/abs/1307.7915