Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Jaime Santos-Rodríguez"'
Publikováno v:
Journal für die reine und angewandte Mathematik
We obtain results about fundamental groups of RCD ∗ ( K , N ) {\mathrm{RCD}^{\ast}(K,N)} spaces previously known under additional conditions such as smoothness or lower sectional curvature bounds. For fixed K ∈ ℝ {K\in\mathbb{R}} , N ∈ [
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b1f524135f91d796c8583b2ff8c3e56
Autor:
Jaime Santos-Rodríguez
Publikováno v:
Advances in Mathematics
Let $(X,d,\mathfrak{m})$ be a metric measure space. The study of theWasserstein space $(\mathbb{P}_p(X),\mathbb{W}_p)$ associated to $X$ has proveduseful in describing several geometrical properties of $X.$ In this paper wefocus on the study of isome
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e97d27f506d3a88c6bfb17a14caf16d5
https://hdl.handle.net/21.11116/0000-000B-1D78-F21.11116/0000-000B-1D7A-D
https://hdl.handle.net/21.11116/0000-000B-1D78-F21.11116/0000-000B-1D7A-D
Autor:
Jaime Santos-Rodríguez, Luis Guijarro
Publikováno v:
manuscripta mathematica. 158:441-461
We prove that the group of isometries of a metric measure space that satisfies the Riemannian curvature condition, $$RCD^*(K,N),$$ is a Lie group. We obtain an optimal upper bound on the dimension of this group, and classify the spaces where this max
Autor:
Jaime Santos-Rodríguez
Given a metric measure space $(X,d,\mathfrak{m})$ that satisfies the Riemannian Curvature Dimension condition, $RCD^*(K,N),$ and a compact subgroup of isometries $G \leq Iso(X)$ we prove that there exists a $G-$invariant measure, $\mathfrak{m}_G,$ eq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58c90ebd7c2cb3f666bd96c86c1ca5d0