Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Jahren, Bjørn"'
Autor:
Hausmann, Jean-Claude, Jahren, Bjørn
Two smooth manifolds M and N are called R-diffeomorphic if their product with the real line are diffeomorphic. We consider the following simplification problem: does R-diffeomorphism imply diffeomorphism or homeomorphism? For compact manifolds, analy
Externí odkaz:
http://arxiv.org/abs/1802.03186
Autor:
Jahren, Bjørn, Kwasik, Slawomir
We study the Whitehead torsions of inertial h-cobordisms, and identify various types representing a nested sequence of subsets of the Whitehead group. A number of examples are given to show that these subsets are all different in general.
Externí odkaz:
http://arxiv.org/abs/1711.04546
Autor:
Jahren, Bjørn, Kwasik, Slawomir
We study the homeomorphism types of manifolds h-cobordant to a fixed one. Our investigation is partly motivated by the notion of special manifolds introduced by Milnor in his study of lens spaces. In particular we revisit and clarify some of the clai
Externí odkaz:
http://arxiv.org/abs/1209.2644
Autor:
Jahren, Bjørn, Kwasik, Sławomir
Topological free involutions on S^1xS^n are classified up to conjugation. As a byproduct we obtain a new computation of the group of concordance classes of homeomorphisms of the projective space RP^n.
Comment: 20 pages
Comment: 20 pages
Externí odkaz:
http://arxiv.org/abs/0802.2035
Autor:
Jahren, Bjørn, Kwasik, Sławomir
Publikováno v:
In Topology and its Applications 1 November 2018 249:150-159
Autor:
Jahren, Bjørn, Hausmann, Jean-Claude
Publikováno v:
Jahren, Bjørn Hausmann, Jean-Claude . A simplification problem in manifold topology. L'Enseignement mathématique (LEM). 2019, 64(1/2), 207-248
L'Enseignement mathématique (LEM)
L'Enseignement mathématique (LEM)
Externí odkaz:
http://hdl.handle.net/10852/76730
https://www.duo.uio.no/bitstream/handle/10852/76730/2/HausmannJahrenEM.pdf
https://www.duo.uio.no/bitstream/handle/10852/76730/2/HausmannJahrenEM.pdf
Autor:
Jahren, Bjørn *, Kwasik, Sławomir
Publikováno v:
In Topology 2003 42(6):1353-1369