Zobrazeno 1 - 10
of 1 344
pro vyhledávání: '"Jahangiri, M."'
Autor:
Jahangiri, M.1 jahangiri.sut@gmail.com, Nazemi, A.1 nazemi20042003@gmail.com
Publikováno v:
Iranian Journal of Fuzzy Systems. May/Jun2024, Vol. 21 Issue 3, p37-63. 27p.
Autor:
Jahangiri, M., Asghari, M.
Publikováno v:
In Applied Mathematics and Computation 1 March 2023 440
Publikováno v:
In Journal of Healthcare Quality Research September-October 2021 36(5):294-300
Autor:
Jahangiri, M., Bagheri, E.
Publikováno v:
In Engineering Structures 1 January 2021 226
Let $I$ and $J$ be two ideals of a commutative Noetherian ring $R$ and $M$ be an $R$-module. For a non-negative integer $n$ it is shown that, if the sets $\Ass_R(\Ext^{n} _{R}(R/I,M))$ and $\Supp_R(\Ext^{i}_{R}(R/I,H^{j}_{I,J} (M)))$ are finite for a
Externí odkaz:
http://arxiv.org/abs/1502.04978
Let $R = \bigoplus_{n \in \mathbb{N}_{0}} R_{n}$ be a standard graded ring, $M$ be a finite graded $R$-module and $J$ be a homogenous ideal of $R$. In this paper we study the graded structure of the $i$-th local cohomology module of $M$ defined by a
Externí odkaz:
http://arxiv.org/abs/1502.04970
Autor:
Shariyat, M., Jahangiri, M.
Publikováno v:
In Composite Structures 1 August 2020 245
Publikováno v:
In European Journal of Mechanics / A Solids May-June 2020 81
Let $R=\bigoplus_{n\geq 0}R_n$, $\fa\supseteq \bigoplus_{n> 0}R_n$ and $M$ and $N$ be a standard graded ring, an ideal of $R$ and two finitely generated graded $R$-modules, respectively. This paper studies the homogeneous components of graded general
Externí odkaz:
http://arxiv.org/abs/1101.4350
Publikováno v:
Comm. Algebra 37 (2009), no. 11, 4095--4102
In this paper, considering the difference between the finiteness dimension and cohomological dimension for a finitely generated module, we investigate the asymptotic behavior of grades of components of graded local cohomology modules with respect to
Externí odkaz:
http://arxiv.org/abs/0812.0957