Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Jafari, Nasrin"'
Publikováno v:
In Journal of Building Engineering 15 August 2024 91
Autor:
Alikhani, Saeid, Jafari, Nasrin
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set of $G$ is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominati
Externí odkaz:
http://arxiv.org/abs/2106.06702
Autor:
Alikhani, Saeid, Jafari, Nasrin
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set of $G$ is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominati
Externí odkaz:
http://arxiv.org/abs/1910.05776
Publikováno v:
In Thin-Walled Structures March 2023 184
Autor:
Jafari, Nasrin
Publikováno v:
In Structures September 2022 43:1436-1446
Autor:
Alikhani, Saeid, Jafari, Nasrin
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set of $G$ is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominati
Externí odkaz:
http://arxiv.org/abs/1705.00826
Autor:
Jafari, Nasrin, Nasiran Najafabadi, Arezo, Hamzei, Behnaz, Ataee, Nioosha, Ghasemi, Zahra, Sadeghian-Rizi, Tahereh, Honardoost, Mohammad Amin, Zamani, Atefeh, Dolatabadi, Nasrin Fattahi, Tabatabaeian, Hossein
Publikováno v:
In Experimental and Molecular Pathology February 2022 124
Autor:
Alikhani, Saeid, Jafari, Nasrin
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set
Externí odkaz:
http://arxiv.org/abs/1609.07789
Autor:
Alikhani, Saeid, Jafari, Nasrin
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set of $G$ is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominati
Externí odkaz:
http://arxiv.org/abs/1605.02222
Autor:
Jafari, Nasrin1 (AUTHOR), Akbari, Hossein1 (AUTHOR), Sarbakhsh, Parvin1 (AUTHOR), Dorosti, Abbasali2 (AUTHOR), Khayatzadeh, Simin3 (AUTHOR), Mohammadpoorasl, Asghar1 (AUTHOR) ampoorasl@gmail.com
Publikováno v:
BMC Health Services Research. 6/13/2023, Vol. 23 Issue 1, p1-6. 6p. 2 Charts.