Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Jaclyn Lang"'
Autor:
Jaclyn Lang, Preston Wake
Publikováno v:
Proceedings of the American Mathematical Society, Series B. 9:415-431
We show that for primes N , p ≥ 5 N, p \geq 5 with N ≡ − 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In par
Autor:
Judith Ludwig, Jaclyn Lang
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 20:1983-1989
Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.
Publikováno v:
Mathematische Annalen
Bella\"iche has recently applied Pink-Lie theory to prove that, under mild conditions, the image of a continuous 2-dimensional pseudorepresentation $\rho$ of a profinite group on a local pro-$p$ domain $A$ contains a nontrivial congruence subgroup of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1851150918e715c9f4fd8b440bfad723
http://arxiv.org/abs/1904.10519
http://arxiv.org/abs/1904.10519
Autor:
Laure Flapan, Jaclyn Lang
Publikováno v:
Transactions of the American Mathematical Society. Series B
Shimura and Taniyama proved that if $A$ is a potentially CM abelian variety over a number field $F$ with CM by a field $K$ linearly disjoint from F, then there is an algebraic Hecke character $\lambda_A$ of $K$ such that $L(A/F,s)=L(\lambda_A,s)$. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19ab18b2c37588f1534077150f696ebe
https://hdl.handle.net/21.11116/0000-0004-07B6-721.11116/0000-0004-07B8-5
https://hdl.handle.net/21.11116/0000-0004-07B6-721.11116/0000-0004-07B8-5
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783319309743
Let \(E/\mathbb{Q}\) be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field \(K/\mathbb{Q}\) satisfying the Heegner hypothesis for E we have a corresponding line in \(E(K) \otimes \mathbb{Q}_{p}\),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::574a8fcb114a0665e294a975e8bdf8af
https://doi.org/10.1007/978-3-319-30976-7_2
https://doi.org/10.1007/978-3-319-30976-7_2
Publikováno v:
Acta Arithmetica. 150:339-359
It is known that innitely many number elds and function m over Fq(T ) with class number indivisible by an arbitrary prime '. We give an explicit description of those primes (and prime powers) q for which the result holds. For the special case where '
Autor:
Jaclyn Lang
Publikováno v:
Jaclyn Lang
Algebra Number Theory 10, no. 1 (2016), 155-194
Algebra Number Theory 10, no. 1 (2016), 155-194
Fix a prime $p > 2$. Let $\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{I})$ be the Galois representation coming from a non-CM irreducible component $\mathbb{I}$ of Hida's $p$-ordinary Hecke algebra. Assume the residual
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::650d8f08c0ac3c6ea9590acebe626149