Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Jack A. M. Leunissen"'
Autor:
Anand K Gavai, Farahaniza Supandi, Hannes Hettling, Paul Murrell, Jack A M Leunissen, Johannes H G M van Beek
Publikováno v:
PLoS ONE, Vol 10, Iss 3, p e0119016 (2015)
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others
Externí odkaz:
https://doaj.org/article/b2a0e450f3474a0a9df7e85fd2c62664
Autor:
Allegra Via, Javier De Las Rivas, Teresa K Attwood, David Landsman, Michelle D Brazas, Jack A M Leunissen, Anna Tramontano, Maria Victoria Schneider
Publikováno v:
PLoS Computational Biology, Vol 7, Iss 10, p e1002245 (2011)
Externí odkaz:
https://doaj.org/article/bc7ecd232ad84eda932f42b91b12b27f
Autor:
Haisheng Nie, Richard P M A Crooijmans, Aart Lammers, Evert M van Schothorst, Jaap Keijer, Pieter B T Neerincx, Jack A M Leunissen, Hendrik-Jan Megens, Martien A M Groenen
Publikováno v:
PLoS ONE, Vol 5, Iss 8, p e11990 (2010)
BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. Wit
Externí odkaz:
https://doaj.org/article/15288dffda9643209e7bb9e6c494a5cb
Autor:
Ke Lin, Harrie Kools, Philip J. de Groot, Anand K. Gavai, Ram K. Basnet, Feng Cheng, Jian Wu, Xiaowu Wang, Arjen Lommen, Guido J. E. J. Hooiveld, Guusje Bonnema, Richard G. F. Visser, Michael R. Muller, Jack A. M. Leunissen
Publikováno v:
Journal of Integrative Bioinformatics, Vol 8, Iss 2, Pp 59-74 (2011)
Journal of integrative bioinformatics 8 (2011) 2
Journal of integrative bioinformatics, 8(2)
Journal of integrative bioinformatics 8 (2011) 2
Journal of integrative bioinformatics, 8(2)
Summary The rapid increase of ~omics datasets generated by microarray, mass spectrometry and next generation sequencing technologies requires an integrated platform that can combine results from different ~omics datasets to provide novel insights in
Publikováno v:
Nucleic Acids Research
Nucleic acids research 37 (2009)
Nucleic acids research, 37, W428-W434
Nucleic acids research 37 (2009)
Nucleic acids research, 37, W428-W434
Current protein sequence databases employ different classification schemes that often provide conflicting annotations, especially for poorly characterized proteins. ProGMap (Protein Group Mappings, http://www.bioinformatics.nl/progmap) is a web-tool
Publikováno v:
Nucleic Acids Research
Nucleic acids research, 36(2), W255-W259
Nucleic Acids Research, 36, W255-W259. Oxford University Press
Nucleic acids research 36 (2008) 2
Brandt, B W, Heringa, J & Leunissen, J A M 2008, ' SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. ', Nucleic Acids Research, vol. 36, pp. W255-W259 . https://doi.org/10.1093/nar/gkn237
Nucleic acids research, 36(2), W255-W259
Nucleic Acids Research, 36, W255-W259. Oxford University Press
Nucleic acids research 36 (2008) 2
Brandt, B W, Heringa, J & Leunissen, J A M 2008, ' SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. ', Nucleic Acids Research, vol. 36, pp. W255-W259 . https://doi.org/10.1093/nar/gkn237
With over 46 000 proteins, the Protein Data Bank (PDB) is the most important database with structural information of biological macromolecules. PDB files contain sequence and coordinate information. Residues present in the sequence can be absent from
Autor:
Mircea Pacurar, Jack A. M. Leunissen, Zoltán Gáspári, Attila Kertész-Farkas, Paolo Sonego, Somdutta Dhir, Sándor Pongor, András Kocsor
Publikováno v:
Nucleic acids research 35 (2007)
Nucleic Acids Research
Nucleic acids research, 35, D232-D236
Nucleic Acids Research
Nucleic acids research, 35, D232-D236
Protein classification by machine learning algorithms is now widely used in structural and functional annotation of proteins. The Protein Classification Benchmark collection (http://hydra.icgeb.trieste.it/benchmark) was created in order to provide st
Autor:
Andreas Untergasser, Jack A. M. Leunissen, Ton Bisseling, René Geurts, Xiangyu Rao, Harm Nijveen
Publikováno v:
Nucleic acids research, 35(suppl2), W71-W74
Nucleic acids research 35 (2007) suppl2
Nucleic Acids Research
Nucleic acids research 35 (2007) suppl2
Nucleic Acids Research
Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is
Autor:
Johannes H. G. M. van Beek, Farahaniza Supandi, Paul Murrell, Hannes Hettling, Jack A. M. Leunissen, Anand Gavai
Publikováno v:
Gavai, A K, Supandi, F, Hettling, H, Murell, P, Leunissen, J A M & van Beek, J H G M 2015, ' Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain. ', PLoS ONE, vol. 10, no. 3, e0119016 . https://doi.org/10.1371/journal.pone.0119016
PLoS ONE, Vol 10, Iss 3, p e0119016 (2015)
PLoS ONE
PLoS ONE, 10(3):e0119016. Public Library of Science
PLoS ONE 10 (2015) 3
PLoS ONE, 10(3)
Gavai, A K, Supandi, F B, Hettling, H, Murell, P, Leunissen, J A M & van Beek, J H G M 2015, ' Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain. ', PLoS ONE, vol. 10, no. 3, e0119016 . https://doi.org/10.1371/journal.pone.0119016
PLoS ONE, Vol 10, Iss 3, p e0119016 (2015)
PLoS ONE
PLoS ONE, 10(3):e0119016. Public Library of Science
PLoS ONE 10 (2015) 3
PLoS ONE, 10(3)
Gavai, A K, Supandi, F B, Hettling, H, Murell, P, Leunissen, J A M & van Beek, J H G M 2015, ' Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain. ', PLoS ONE, vol. 10, no. 3, e0119016 . https://doi.org/10.1371/journal.pone.0119016
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf45ecf0131958d900ced624f7c8b4e0
https://research.vu.nl/en/publications/29d9e32d-b439-48ad-bc63-829bcd6c4e44
https://research.vu.nl/en/publications/29d9e32d-b439-48ad-bc63-829bcd6c4e44
Publikováno v:
Nucleic acids research, 34, W104-W109
Nucleic Acids Research
Nucleic acids research 34 (2006)
Nucleic Acids Research
Nucleic acids research 34 (2006)
Phylogenetic analysis and examination of protein domains allow accurate genome annotation and are invaluable to study proteins and protein complex evolution. However, two sequences can be homologous without sharing statistically significant amino aci