Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Jacek Zienkiewicz"'
We consider a strictly stationary random field on the two-dimensional integer lattice with regularly varying marginal and finite-dimensional distributions. Exploiting the regular variation, we define the spatial extremogram which takes into account o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1e7797c7528c4e5b7cd9e658f06125d
http://arxiv.org/abs/2211.03260
http://arxiv.org/abs/2211.03260
Autor:
Maciej Paluszynski, Jacek Zienkiewicz
Publikováno v:
Journal of Fourier Analysis and Applications. 28
We introduce atoms for dyadic atomic $${\mathbb {H}}^1$$ H 1 for which the equivalence between the atomic and maximal function definitions is dimension independent. We give sharp, up to $$\log (d)$$ log ( d ) factor, estimates for the $${{\mathbb {H}
Autor:
Jacek Zienkiewicz, Adam Sikora
Publikováno v:
Studia Mathematica. 257:1-24
Autor:
Maciej Paluszynski, Jacek Zienkiewicz
Publikováno v:
The Journal of Geometric Analysis. 31:8866-8878
We prove theorems and exhibit a counterexample concerning an atomic decomposition of martingale $${{\mathbb {H}}^1}$$ H 1 with atoms satisfying simultaneous cancellation condition (3).
Autor:
Jacek Zienkiewicz, Maciej Paluszynski
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :679-704
Autor:
Maciej Paluszynski, Jacek Zienkiewicz
We describe the structure of the resolvent of the discrete rough truncated Hilbert transform under the critical exponent. This extends the results obtained in [8].
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b3fd15db0024dd2bfa62df215a2af14
Publikováno v:
Advances in Mathematics. 330:834-875
We consider the parabolic–elliptic model for the chemotaxis with fractional (anomalous) diffusion. Global-in-time solutions are constructed under (nearly) optimal assumptions on the size of radial initial data. Moreover, criteria for blowup of radi
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 37:1841-1856
We consider two-dimensional versions of the Keller--Segel model for the chemotaxis with either classical (Brownian) or fractional (anomalous) diffusion. Criteria for blowup of solutions in terms of suitable Morrey spaces norms are derived. Moreover,
Publikováno v:
Journal of Difference Equations and Applications. 22:1646-1662
We consider the stochastic difference equation on RXn=AnXn-1+Bn,n≥1,where (An,Bn)∈R×R is an i.i.d. sequence of random variables and X0 is an initial distribution. Under mild contractivity hypotheses the sequence Xn converges in law to a random v
Publikováno v:
Discrete and Continuous Dynamical Systems. 36:4997-5010
We study a dynamics of solutions to a system of reaction-diffusion equations modeling a biological pattern formation. This model has activator-inhibitor type nonlinearities and we show that it has solutions blowing up in a finite time. More precisely