Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Jacek Dziubański"'
Autor:
Agnieszka Hejna, Jacek Dziubański
Publikováno v:
Studia Mathematica. 262:275-303
Autor:
Jacek Dziubański, Agnieszka Hejna
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
On $$\mathbb R^N$$ R N equipped with a normalized root system R, a multiplicity function $$k(\alpha ) > 0$$ k ( α ) > 0 , and the associated measure $$\begin{aligned} dw(\mathbf{x})=\prod _{\alpha \in R}|\langle \mathbf{x},\alpha \rangle |^{{k(\alph
Autor:
Jacek Dziubański, Agnieszka Hejna
Publikováno v:
Studia Mathematica. 251:89-110
Autor:
Agnieszka Hejna, Jacek Dziubański
Publikováno v:
Journal of Functional Analysis. 277:2133-2159
For a normalized root system R in R N and a multiplicity function k ≥ 0 let N = N + ∑ α ∈ R k ( α ) . Denote by d w ( x ) = ∏ α ∈ R | 〈 x , α 〉 | k ( α ) d x the associated measure in R N . Let F stand for the Dunkl transform. Give
Publikováno v:
Journal of Fourier Analysis and Applications. 25:2356-2418
In this work we extend the theory of the classical Hardy space $$H^1$$ to the rational Dunkl setting. Specifically, let $$\Delta $$ be the Dunkl Laplacian on a Euclidean space $$\mathbb {R}^N$$ . On the half-space $$\mathbb {R}_+\times \mathbb {R}^N$
Autor:
Agnieszka Hejna, Jacek Dziubański
Publikováno v:
Monatshefte für Mathematik. 185:397-413
The aim of this note is to define localized sharp functions on certain domains in $${\mathbb {R}}^n$$ and prove $$L^p$$ estimates analogue to that of Fefferman–Stein. The proofs go by modifications of the good lambda inequality.
Autor:
Jacek Dziubański, Agnieszka Hejna
On $$\mathbb {R}^N$$ equipped with a normalized root system R and a multiplicity function $$k\ge 0$$ let us consider a (not necessarily radial) kernel $$K({\mathbf {x}})$$ satisfying $$|\partial ^\beta K({\mathbf {x}})|\lesssim \Vert {\mathbf {x}}\Ve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95a4109a6d6c84b719c069fde77fb117
http://arxiv.org/abs/1910.06433
http://arxiv.org/abs/1910.06433
Publikováno v:
Integral Equations and Operator Theory. 91
We characterize functions $$V\le 0$$ for which the heat kernel of the Schrodinger operator $$\Delta +V$$ is comparable with the Gauss–Weierstrass kernel uniformly in space and time. In dimension 4 and higher the condition turns out to be more restr
Autor:
Agnieszka Hejna, Jacek Dziubański
On the Euclidean space $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k\geq 0$, and the associated measure $dw(\mathbf x)=\prod_{\alpha\in R} |\langle \mathbf x,\alpha\rangle|^{k(\alpha)}d\mathbf x$ we consider the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91ebcfe6d39db276d5f16926901043e1
Autor:
Błażej Wróbel, Jacek Dziubański
Publikováno v:
Journal of Approximation Theory. 211:85-93
We prove the strong continuity of spectral multiplier operators associated with dilations of certain functions on the general Hardy space H L 1 introduced by Hofmann, Lu, Mitrea, Mitrea, Yan. Our results include the heat and Poisson semigroups as wel