Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Jaakko Pihlajasalo"'
Autor:
Jaakko Pihlajasalo, Dani Korpi, Taneli Riihonen, Jukka Talvitie, Mikko A. Uusitalo, Mikko Valkama
Publikováno v:
2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC).
With wireless networks evolving towards mmWave and sub-THz frequency bands, hardware impairments such as IQ imbalance, phase noise (PN) and power amplifier (PA) nonlinear distortion are increasingly critical implementation challenges. In this paper,
Autor:
Taneli Riihonen, Dani Korpi, Mikko Honkala, Jaakko Pihlajasalo, Mikko Uusitalo, Alberto Brihuega, Mikko Valkama, Janne Huttunen, Jukka Talvitie
Publikováno v:
IEEE Transactions on Wireless Communications. :1-1
Autor:
Jaakko Pihlajasalo, Dani Korpi, Mikko Honkala, Janne M. J. Huttunen, Taneli Riihonen, Jukka Talvitie, Mikko A. Uusitalo, Mikko Valkama
Publikováno v:
2021 55th Asilomar Conference on Signals, Systems, and Computers.
In this paper, we propose a machine learning (ML) aided physical layer receiver technique for demodulating OFDM signals that are subject to very high Doppler effects and the corresponding distortion in the received signal. Specifically, we develop a
Autor:
Jaakko Pihlajasalo, Jukka Talvitie, Taneli Riihonen, Mikko A. Uusitalo, Alberto Brihuega, Mikko Valkama, Mikko Honkala, Janne M. J. Huttunen, Dani Korpi
Publikováno v:
PIMRC
In this paper, we propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals that are subject to a high level of nonlinear distortion. Specifically, a novel deep learning based convolutional neural network re
Publikováno v:
VTC-Fall
The 5th generation mobile networks introduce large bandwidths with extended beamforming capabilities, which results in increased spatial selectivity of received channel state information. A channel chart is a map of the radio geometry that surrounds
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ba7dc495e6ed0547821478bfe29659e
https://trepo.tuni.fi/handle/10024/132986
https://trepo.tuni.fi/handle/10024/132986
Publikováno v:
ICL-GNSS
Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomia
Publikováno v:
2018 European Navigation Conference (ENC).
This paper presents a method for improving the accuracy of extended GNSS satellite orbit predictions with convolutional neural networks (CNN). Satellite orbit predictions are used in self-assisted GNSS to reduce the Time to First Fix of a satellite p
Publikováno v:
Tampere University
Channel charts are a map of the radio geometry that surrounds the base station and they are generated in an unsupervised manner from the received channel state information. In this work, we generate channel charts for two different antenna types for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1214770d742b3693df8f8a2e127cfa34
https://researchportal.tuni.fi/en/publications/06a353c4-809b-48f2-8469-f5764c89f5ab
https://researchportal.tuni.fi/en/publications/06a353c4-809b-48f2-8469-f5764c89f5ab